EXAM: Matematisk statistik och diskret matematik (MVE051/MSG810). Statistik för fysiker (MSG820).

Time and place: Thursday 19 December 2013, 14:00–18:00, Väg och vatten. Jour: Malin Palö, 031-772 5379.

Allowed help: Chalmers-approved calculator, Swedish-English dictionary and Beta handbook.

Grades: Chalmers: 3: 12 points, 4: 18 points, 5: 24 points. GU: G: 12 points, VG: 21 points. Maximal amount of points is 30.

Good luck!

- 1. (2p) Assume that X and Y are independent random variables and that $\mathbf{E}[X] = \mathbf{E}[Y] = \mathbf{Var}[X] = \mathbf{Var}[Y] = 0.5$. Choose the correct statement, and motivate your choice:
 - (a) $\mathbf{E}[2 * X + 2 * Y] = 2$, $\mathbf{Var}[2 * X 2 * Y] = 0$,
 - (b) $\mathbf{E}[2 * X 2 * Y] = 0, \mathbf{Var}[2 * X + 2 * Y] = 2,$
 - (c) $\mathbf{E}[2 * X + 2 * Y] = 2, \mathbf{Var}[2 * X 2 * Y] = 4,$
 - (d) none of the above is correct.
- 2. (2p) Assume that 100 people have answered Problem 1 independently, each choosing one of the four possible options uniformly at random, so that every option has the same probability to be chosen. What can you say about the distribution of X, the total number of people, who guessed the correct answer? Choose the two correct statements (there are exactly two):
 - (a) X is Binomially distributed with parameters n = 100, p = 0.25.
 - (b) X is Binomially distributed with parameters n = 4, p = 0.5.
 - (c) X is Binomially distributed with parameters n = 100, p = 0.5
 - (d) X is Binomially distributed with some other parameters.
 - (e) The distribution of X can be approximated by a Normal distribution with parameters $\mu = 100, \sigma = 0.25$
 - (f) The distribution of X can be approximated by a Normal distribution with parameters $\mu = 25$, $\sigma^2 = 18.75$
 - (g) The distribution of X can be approximated by a Normal distribution with parameters $\mu=50,\,\sigma^2=25$
 - (h) The distribution of X can be approximated by a Normal distribution with some other parameters.
- 3. (2p) Find the probability of guessing a correct answer for a Problem 2, if one chooses the answer uniformly at random among all possible combinations of two options. (Hint: use the classical definition of probability)
- 4. (4p) Assume that 100 students answer the Problem 1 independently of each other, and that each has the same probability of getting a correct answer. Denote that probability by p. Out of curiosity, Anton wants to test a hypothesis $H_0: p = 0.25$, corresponding to the situation where everybody attempts to guess the answer, choosing one of the oprions uniformly at random, against the alternative $H_1: p > 0.25$.

- a) Anton uses the test statistic \hat{p} . Find the critical region for it on the significance levels $\alpha = 0.05$ and $\alpha = 0.01$.
- b) Assume that out of 100 students, 34 have answered correctly. Find the results of the hypothesis test on $\alpha = 0.05$ and $\alpha = 0.01$. What is the *p*-value of the corresponding tests?
- 5. (3p) Assume the total proportion of the students that fail the exam is p. Anton starts grading the exams one by one, works until he grades the first failed exam, then goes for a coffee.
 - a) What is the distribution of the number of works Anton is going to grade before his first cup of coffee? (you can assume that different students' results are independent of each other, and that the total ammount of exams to grade is absurdly immense, or even infinite)
 - b) Find the probability (write a formula) that Anton will grade at least 3 works before having a coffee.
- 6. (5p) Assume that the time Y needed to finish all the 9 questions of the exam is distributed normally, with parameters $\mu = 3.5$ hr, $\sigma = 1$ hr.
 - a) If 4 hours are given to complete the exam, what is the probability to be on time?
 - b) Again, assume n = 100 people are taking the exam. Given the probability p from part 'a)', what is the exact distribution of X, the number of students who finish on time? (Hint: let 'finishing on time' correspond to the 'success' in the series of 100 independent experiments)
 - c) If X denotes the number of people who finish on time, find $\mathbf{P}(X > 50)$. (Hint: use the Normal approximation)
- 7. (4p) Beth is not sure about the answer for the Problem 1. Her mind goes wondering according to a Markov chain (X_n) , starting in $X_0 = a'$, governed by the following transition matrix:

$$A = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \begin{pmatrix} 0.5 & 0.25 & 0 & 0.25 \\ 0 & 0.5 & 0.25 & 0.25 \\ 0.25 & 0 & 0.5 & 0.25 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Beth's mind wonders for a little while (2 steps of the Markov chain), and the answer she chooses is then given by X_2 , the state of the Markov chain after 2 steps.

- a) Sketch a state diagram of the corresponding Markov chain.
- b) Which answer will Beth pick with the maximal probability? (Hint: find the distribution vector of a MC's state after two steps, pick the state with the maximal probability)
- c) Which answer would Beth pick eventually, if her mind was given an infinite amount of time to wonder (that is, if the corresponding Markov chain made a very large number of steps), and why?

- 8. (4p) Assume that p is the total proportion of statistical problems that Beth can solve.
 - a) How many questions does the final exam have to contain in order to build a 95% confidence interval for that proportion of length at most 0.2? You can assume that Beth solves different questions independently of each other, each with probability p.
 - b) Would that number increase or decrease if we had the prior estimate of p?
- 9. (4p) Alice, Bob, Claire and Dean decide to cooperate, dividing the 9 questions between themselves. Alice wants to get between 3 and 9 questions, Bob wants to get between 0 and 4, and Clair and Dean have no preferences whatsoever.
 - a) Denote by y_1, y_2, y_3, y_4 the respective number of questions each of the four students gets, and write the corresponding diophantine equation with the constraints.
 - b) Write the generating function for that combinatorical problem.
 - c) How many ways is there to make a division so that everyone is happy?

TABLE V Cumulative distribution: Standard normal

$F_Z(z) = P[Z \le z]$										
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
=2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	Q.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
=1,9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1,7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
=1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
- 1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1,0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.0	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1921	0.1894	0.1867
AD~	0.242()	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.0 0.5	0.2743	0.2709	0.2676	0.2643	0.2611 -	0.2578	0.2546	0.2514	0.2483	0.2451
	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4 110	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
S-82	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-01	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
~0.B	0.4002	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
	0000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

TABL	Е'	V
------	----	---

Cumulative distribution: Standard normal (concluded)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
10	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
11	0 8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0,9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2,3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9960
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.5555
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9990	0.2227
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	

STATISTICAL TABLES 699

TABLE VIT distribution

Column heading = cumulative probability Row heading = degrees of freedom Row ∞ = standard normal values

					$P[T_{\gamma} \leq t]$				
γ	.6	.75	.9	.95	.975	.99	.995	.999	.9995
1 2 3 4 5	0.325 0.289 0.277 0.271 0.267	$\begin{array}{c} 1.000 \\ 0.816 \\ 0.765 \\ 0.741 \\ 0.727 \end{array}$	3.078 1.886 1.638 1.533 1.476	6.314 2.920 2.353 2.132 2.015	· 12.706 4.303 3.182 2.776 2.571	31.821 6.965 4.541 3.747 3.365	63.657 9.925 5.841 4.604 4.032	318.317 22.327 10.215 7.173 5.893	636.607 31.598 12.924 8.610 6.869
6 7 8 9 10	$\begin{array}{c} 0.265 \\ 0.263 \\ 0.262 \\ 0.261 \\ 0.260 \end{array}$	$\begin{array}{c} 0.718 \\ 0.711 \\ 0.706 \\ 0.703 \\ 0.700 \end{array}$	$1.440 \\ 1.415 \\ 1.397 \\ 1.383 \\ 1.372$	$1.943 \\ 1.895 \\ 1.860 \\ 1.833 \\ 1.812$	2.447 2.365 2.306 2.262 2.228	3.143 2.998 2.896 2.821 2.764	3.707 3.499 3.355 3.250 3.169	5.208 4.785 4.501 4.297 4.144	5.959 5.408 5.041 4.781 4.587
11 12 13 14 15	$\begin{array}{c} 0.260 \\ 0.259 \\ 0.259 \\ 0.258 \\ 0.258 \end{array}$	0.697 0.695 0.694 0.692 0.691	1.363 1.356 1.350 1.345 1.341	$1.796 \\ 1.782 \\ 1.771 \\ 1.761 \\ 1.753$	2.201 2.179 2.160 2.145 2.131	2.718 2.681 2.650 2.624 2.602	3.106 3.055 3.012 2.977 2.947	4.025 3.930 3.852 3.787 3.733	4.437 4.318 4.221 4.140 4.073
16 17 18 19 20	0.258 0.257 0.257 0.257 0.257	$\begin{array}{c} 0.690 \\ 0.689 \\ 0.688 \\ 0.688 \\ 0.688 \\ 0.687 \end{array}$	$1.337 \\ 1.333 \\ 1.330 \\ 1.328 \\ 1.325$	$1.746 \\ 1.740 \\ 1.734 \\ 1.729 \\ 1.725$	2.120 2.110 2.101 2.093 2.086	2.583 2.567 2.552 2.539 2.528	2.921 2.898 2.878 2.861 2.845	3.686 3.646 3.611 3.579 3.552	4.015 3.965 3.922 3.883 3.850
21 22 23 24 25	0.257 0.256 0.256 0.256 0.256 0.256	$0.686 \\ 0.686 \\ 0.685 \\ 0.685 \\ 0.685 \\ 0.684$	$\begin{array}{c} 1.323 \\ 1.321 \\ 1.319 \\ 1.318 \\ 1.316 \end{array}$	$\begin{array}{c} 1.721 \\ 1.717 \\ 1.714 \\ 1.711 \\ 1.708 \end{array}$	2.080 2.074 2.069 2.064 2.060	2.518 2.508 2.500 2.492 2.485	2,831 2.819 2.807 2.797 2.787	3.527 3.505 3.485 3.467 3.450	3.819 3.792 3.768 3.745 3.725
26 27 28 29 30	0.256 0.256 0.256 0.256 0.256	$0.684 \\ 0.684 \\ 0.683 \\ 0.683 \\ 0.683 \\ 0.683$	$1.315 \\ 1.314 \\ 1.313 \\ 1.311 \\ 1.310 \\ 1.31$	1.706 1.703 1.701 1.699 1.697	2.056 2.052 2.048 2.045 2.042	2.479 2.473 2.467 2.462 2.457	2.779 2.771 2.763 2.756 2.750	3.435 3.421 3.408 3.396 3.385	3.707 3.690 3.674 3.659 3.646
31 32 33 34 35	0.256 0.255 0.255 0.255 0.255	$\begin{array}{c} 0.682 \\ 0.682 \\ 0.682 \\ 0.682 \\ 0.682 \\ 0.682 \end{array}$	$\begin{array}{c} 1.309 \\ 1.309 \\ 1.308 \\ 1.307 \\ 1.306 \end{array}$	1.696 1.694 1.692 1.691 1.690	2.040 2.037 2.035 2.032 2.030	2.453 2.449 2.445 2.441 2.438	2.744 2.738 2.733 2.728 2.724	3.375 3.365 3.356 3.348 3.340	3.633 3.622 3.611 3.601 3.591
25 37 38 39 40 41	0.255 0.255 0.255 0.255 0.255	$\begin{array}{c} 0.681 \\ 0.681 \\ 0.681 \\ 0.681 \\ 0.681 \\ 0.681 \end{array}$	1.306 1.305 1.304 1.304 1.303	1.688 1.687 1.686 1.685 1.685	2.028 2.026 2.024 2.023 2.021	2.434 2.431 2.429 2.426 2.423	2.719 2.715 2.712 2.708 2.704	3.333 3.326 3.319 3.313 3.307	3.582 3.574 3.566 3.558 3.551
42 42 43 44	0.255 0.255 0.255 0.255	0.681 0.680 0.680 0.680	1.303 1.302 1.302 1.301	1.683 1.682 1.681 1.680	2.020 2.018 2.017 2.015	2.421 2.418 2.416 2.414	2.701 2.698 2.695 2.692	3.301 3.296 3.291 3.286	3.544 3.538 3.532 3.526

TABLE V	VI
---------	----

T distribution (concluded)

γ	.6	.75	.9	.95	.975	.99	.995	,999	.9995
45	0.255	0.680	1.301	1.679	2.014	2.412	2.690	3.281	3.520
46 47 48 49 50	0.255 0.255 0.255 0.255 0.255	$\begin{array}{c} 0.680 \\ 0.680 \\ 0.680 \\ 0.680 \\ 0.680 \\ 0.679 \end{array}$	1.300 1.300 1.299 1.299 1.299	$1.679 \\ 1.678 \\ 1.677 \\ 1.677 \\ 1.677 \\ 1.676 \end{cases}$	2.013 2.012 2.011 2.010 2.009	2.410 2.408 2.407 2.405 2.403	2.687 2.685 2.682 2.680 2.678	3.277 3.273 3.269 3.265 3.261	3.515 3.510 3.505 3.500 3.496
51 52 53 54 55	0.255 0.255 0.255 0.255 0.255	0.679 0.679 0.679 0.679 0.679	1.298 1.298 1.298 1.297 1.297	1.675 1.675 1.674 1.674 1.673	2.008 2.007 2.006 2.005 2.004	2.402 2.400 2.399 2.397 2.396	2.676 2.674 2.672 2.670 2.668	3.258 3.255 3.251 3.248 3.245	3.492 3.488 3.484 3.480 3.476
56 57 58 59 60	$\begin{array}{c} 0.255 \\ 0.255 \\ 0.255 \\ 0.254 \\ 0.254 \\ 0.254 \end{array}$	0.679 0.679 0.679 0.679 0.679 0.679	1.297 1.297 1.296 1.296 1.296	1.673 1.672 1.672 1.671 1.671	2.003 2.002 2.002 2.001 2.001	2.395 2.394 2.392 2.391 2.390	2.667 2.665 2.663 2.662 2.660	3.242 3.239 3.237 3.234 3.232	3.473 3.470 3.466 3.463 3.463
61 62 63 64 65	0.254 0.254 0.254 0.254 0.254	0.679 0.678 0.678 0.678 0.678 0.678	1.296 1.295 1.295 1.295 1.295 1.295	1.670 1.670 1.669 1.669 1.669	2.000 1.999 1.998 1.998 1.997	2.389 2.388 2.387 2.386 2.385	2.659 2.658 2.656 2.655 2.654	3.229 3.227 3.225 3.223 3.223 3.221	3.457 3.455 3.452 3.449 3.449 3.447
66 67 68 69 70	0.254 0.254 0.254 0.254 0.254	0.678 0.678 0.678 0.678 0.678 0.678	1.295 1.294 1.294 1.294 1.294 1.294	1.668 1.668 1.668 1.667 1.667	1.997 1.996 1.995 1.995 1.995 1.994	2.384 2.383 2.382 2.382 2.382 2.381	2.652 2.651 2.650 2.649 2.648	3.218 3.217 3.215 3.213 3.213 3.211	3.444 3.442 3.440 3.437 3.435
71 72 73 74 75	$\begin{array}{c} 0.254 \\ 0.254 \\ 0.254 \\ 0.254 \\ 0.254 \\ 0.254 \end{array}$	0.678 0.678 0.678 0.678 0.678 0.678	1.294 1.293 1.293 1.293 1.293 1.293	$1.667 \\ 1.666 \\ 1.666 \\ 1.666 \\ 1.666 \\ 1.665$	1.994 1.993 1.993 1.993 1.993	2.380 2.379 2.379 2.378 2.377	2.647 2.646 2.645 2.644 2.643	3.209 3.207 3.206 3.204 3.203	3.433 3.431 3.429 3.427 3.425
76 77 78 79 80	0.254 0.254 0.254 0.254 0.254	0.678 0.678 0.678 0.678 0.678 0.678	1.293 1.293 1.292 1.292 1.292	1.665 1.665 1.665 1.664 1.664	1.992 1.991 1.991 1.990 1.990	2.376 2.376 2.375 2.375 2.375 2.374	2.642 2.641 2.640 2.640 2.639	3.201 3.200 3.198 3.197 3.195	3.423 3.422 3.420 3.418 3.416
81 82 83 84 85	0.254 0.254 0.254 0.254 0.254	0.678 0.677 0.677 0.677 0.677	1.292 1.292 1.292 1.292 1.292 1.292	1.664 1.664 1.663 1.663 1.663	1.990 1.989 1.989 1.989 1.989	2.373 2.373 2.372 2.372 2.371	2.638 2.637 2.636 2.636 2.635	3.194 3.193 3.191 3.190 3.189	3.415 3.413 3.412 3.410 3.409
86 87 88 89 90	0.254 0.254 0.254 0.254 0.254	0.677 0.677 0.677 0.677 0.677	1.291 1.291 1.291 1.291 1.291 1.291	1.663 1.663 1.662 1.662 1.662	1.988 1.988 1.987 1.987 1.987	2.371 2.370 2.369 2.369 2.369	2.634 2.634 2.633 2.632 2.632	3.188 3.187 3.186 3.184 3.183	3.407 3.406 3.405 3.403 3.402
91 92 93 94 95	0.254 0.254 0.254 0.254 0.254	0.677 0.677 0.677 0.677 0.677	1.291 1.291 1.291 1.291 1.291 1.291	1.662 1.662 1.661 1.661 1.661	1.986 1.986 1.986 1.986 1.985	2.368 2.368 2.367 2.367 2.366	2.631 2.630 2.630 2.629 2.629	3.182 3.181 3.180 3.179 3.178	3:401 3:400 3:398 3:397 3:396
96 97 98 99 100 ∞	$\begin{array}{c} 0.254 \\ 0.254 \\ 0.254 \\ 0.254 \\ 0.254 \\ 0.254 \\ 0.253 \end{array}$	0.677 0.677 0.677 0.677 0.677 0.677	1.290 1.290 1.290 1.290 1.290 1.290 1.282	$\begin{array}{c} 1.661 \\ 1.661 \\ 1.661 \\ 1.660 \\ 1.660 \\ 1.645 \end{array}$	$\begin{array}{c} 1.985 \\ 1.985 \\ 1.984 \\ 1.984 \\ 1.984 \\ 1.984 \\ 1.960 \end{array}$	2.366 2.365 2.365 2.365 2.364 2.326	2.628 2.627 2.627 2.626 2.626 2.576	3.177 3.176 3.176 3.175 3.175 3.174 3.090	3.393 3.394 1.393 3.392 3.391 3.291