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The purpose of collecting and analyzing data

I Purpose: To build and select models for parts of the real world
(which can be used for prediction).

I The first part of data analysis is always to summarize and visualize
the data. This is called descriptive statistics. (Most people call it
just ”statistics”).

I What separates mathematical statistics from descriptive statistics is
that we use probaility theory to formulate, build, and select the
models for parts of the real world.
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Data collection and analysis is always subjective

I What one decides to study, how one decides to study it, and what
data one decides to collect, is necessarily based on ones
preconceptions.

I Your way to summarize and visualize data is always influenced by
your preconceptions; indeed, different ways to summarize data can
be used to promote different ideas.

I The choice between different statistical models (and in some settings
the choice of different statistical methods) is necessarily subjective.
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Summarizing data

I Graphical summaries: Illustrating the data (or part of the data) in
an plot or figure.

I Numerical summaries: Computing from the data (or part of the
data) one or more numbers that tells something important about the
data.

There are a large number of ways to summarize; you should at least know
the ones we go through below.
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Numerical summaries

Let x1, x2, . . . , xn be observed real values.

I Mean: x = 1
n (x1 + x2 + · · ·+ xn).

I Median: If we sort the data so we write it y1, . . . , yn in order of size,
then the median is y(n+1)/2 if n is odd and the mean of yn/2 and
yn+1/2 if n is even.

I Sample variance:

s2 =
1

n − 1

n∑
i=1

(xi − x)2

I The sample standard deviation is the square root of this.

I Min and max.
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Quantiles and percentiles

I Quantile: A number such that a certain proportion of the data
values is smaller than the number.

I We may also talk about a perentile, where the proportion is specified
with a percentage.

I Example: The 30th percentile is a number such that 30% of the
data is smaller than the number.

I Example: The median is the same thing as the 50th percentile.

I Example: The first quartile is a number such that a quarter of the
data is smaller than the number.

I Example: The inter-quartile range is the interval between the 25th
and 75th percentile.

I We also talk about quantiles for probability densities. Example: The
first quartile of a normal density Normal(µ, σ) is the number z0 such
that Pr(z < z0) = 1/4 when z ∼ Normal(µ, σ).
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Graphical summaries

I Scatterplots.

I Histograms. Note how certain parameters must be selected (and is
usually selected automatically by the program making the
histogram).

I Boxplots: Efficient way to illustrate and compare the spread in one
or more groups of data. Plots a box with the inter-quartile range
and the median, together with ”whiskers” indicating the spread of
the data (definitions may vary) and individual observations outside
this spread.

I Exact definitions of parameter defaults in the functions above, and
generally the choice of graphical functions, depends on the program
you use.

I We may regard graphical summaries as a step on the way to
selecting a probabilistic model for the data.

I A free and powerful tool for statistics: R (www.r-project.org).
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Random variables as models for data

The second step in a statistical data analysis is to find a probabilistic
model for your data.

I We describe a population of objects, or maybe possible observations,
where our data represents a subset of this population.

I Example: We have measured the concentration of lead in 10 fish
from a lake. The population may be the lead concentrations of all
the fish in the lake. (Which species? Only this lake? ...). The model
of the population could be for example a normal distribution, or a
normal distribution of the logged values.

I We generally have to assume that our data is a random sample from
the popultation, i.e., that

I Each data value is randomly chosen from the population (so each
population member has the same chance of being observed, or, given
a model, the model specifies the probability (density) of each
possible observation).

I The observations are independent of each other.

I It is very important to specify the population so that the assumption
that your data is a random sample is reasonable!
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Finding a probabilistic model for your data

In this course, finding a probabilistic (or stochastic) model for your data
will have two steps:

I Step 1: Find the type of model, i.e., a family of probability
distributions that fit the context: The Normal family, the Binomial
family, the Poisson family, etc.

I Consider: Are the observed values real numbers or integers? (Could
they be real numbers?) Is this a ”sequence of trials”? Etc.

I In our course, we may use Hypothesis Testing for selecting between
possible models, but alternative methods also exist.

I Step 2: Find the parametres of the model (For example, find values
for µ and σ2 if the model is Normal, or λ if the model is Poisson).

I In this course, we will use estimators which compute from the data
an estimate for the model parameters.

I It is also possible to use probability theory to obtain probability
distributions for the parameters; this is outside this course.
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Estimates and estimators

Assume we have a model with unknown parameter θ and data x1, . . . , xn
which we assume is a random sample from the model.

I We separate between
I An estimator for θ: A function or formula which from a random

sample x1, . . . , xn computes a number which may function as a value
for the parmeter θ.

I An estimate for θ: The value of the estimator for specific values of
x1, . . . , xn.

I We often write θ̂ for the estimate, but also for the estimator for θ.
(So if the parameter is called for example µ, we write µ̂ etc.).

I A function of a random sample is called a statistic. So an estimator
is a statistic.

I A statistic is also a random variable, as it is a function of random
variables. So we can talk about its distribution, expectation,
variance, etc.
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Constructing an estimator

Generally, in this course we will use ”standard estimators” for each
context, but here is a discussion on obtaining estimators:

I There is no general mathematical specification for how to construct
an estimator. Instead one may specify some properties one believes
a ”good” estimator should have, and try to find estimators fulfilling
these criteria.

I A good property for an estimator: To be unbiased: This means that
the expectation of the estimator is equal to the parameter it is
estimating.

I A good property for an estimator: To have as small variance as
possible.

I A common way to construct an estimator (the Maximum Likelihood
(ML) method): Write the probability of the observed data as a
function of the model parmeters. This is the likelihood function.
Find the parameters mazimizing this function. The formula for
computing this maximum from the data becomes the estimator.
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Estimator for the expectation

I Assume data is a random sample from Normal(µ, σ), so that they
are represented by independent random variables

X1,X2, . . . ,Xn ∼ Normal(µ, σ)

We want to find an estimator for µ.

I A natural estimator is µ̂ = 1
n

∑n
i=1 Xi = X . (This is an ML

estimator).

I The estimator is unbiased, i.e., E
[
X
]

= µ. (Simple proof).

I The proof works equally well for any distribution fo Xi . So the
estimator X is always an unbiased estimator for the expectaiton of a
distribution.

I Example: Assume the observations x1, x2, . . . , xn are a random
sample from a Poisson(λ) distribution, where the expectation is
equal to the parameter λ. Then X is an unbiased estimator for λ.
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Variance of an estimator

I The estimator X has variance σ2/n, where σ2 is the variance of the
distribution for X1, . . . ,Xn.

I The proof is good to understand. NOTE: The proof uses that, if X
and Y are independent random variables, we have
Var [X + Y ] = Var [X ] + Var [Y ]. This is also good to understand.

I Example: The Bernoulli distribution (which is the Binomial
distribution with only one trial):

I The distribution has a parameter p and X ∼ Bernoulli(p) has
possible values 0 and 1.

I The expectation is p and the variance is p(1 − p).
I p̂ = X is an unbiased estimator for p. The variance of this estimator

is p(1 − p)/n.
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Estimator for variance

I If X1,X2, . . . ,Xn is a random sample from a distribution with
expectation µ and variance σ2, then

σ̂2 =
1

n − 1

n∑
i=1

(Xi − X )2

is an unbiased estimator for σ2.

I The proof may be useful to understand:

E
[
σ̂2
]

= E

[
1

n − 1

n∑
i=1

(Xi − X )2

]

= E

[
1

n − 1

n∑
i=1

((Xi − µ)− (X − µ))2

]
= · · · = σ2

I This is the reason why we divide with n − 1 to compute the sample
variance: It makes the estimator unbiased.
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The distribution of an estimator

I To further find out how ”good” an estimator is, we can study its
distribution, not only its expectation and variance.

I Example: If X1, . . . ,Xn ∼ Normal(µ, σ), then we know the estimator
X has expectation µ and variance σ2/n: Also:

I One can show: If X1, . . . ,Xn are independent and normally
distributed, then X1 + X2 + · · · + Xn is normally distributed.

I We know that if Y is normally distributed then Y /n is also normally
distributed.

From this we get that X ∼ Normal(µ, σ/
√
n).

I If X1, . . . ,Xn has a Bernoulli-distribution with parameter p, then we
get from the definitions that X1 + X2 + · · ·+ Xn has a
Binomialdistribution with parmeters n och p. From this we can also
get an explicit description of the distribution of
X = (X1 + X2 + · · ·+ Xn)/n.

I One can show that if X1, . . . ,Xn ∼ Normal(µ, σ) then, for the
variance estimator σ̂2 we get

(n − 1)σ̂2/σ2 ∼ χ2(n − 1)

So: (n − 1)σ̂2 has a distribution that corresponds to σ2 multiplied
with a chi-squared distribution with n − 1 degrees of freedom.
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We study estimators not estimates

I Assume we investigate a type of trials which each time result in
success (1) or failure (0), and the probability of success is an
unknown parameter p. Assume we make some trials and get the
results

0, 1, 0, 0, 1, 0, 0, 1

We make the estimate 3/8 = 0.375 for p.

I How ”good” is this estimate? We cannot say anything about that
before we specify the estimator.

I ALTERNATIVE 1: The estimator consists of making 8 trials, letting
x be the number of successes, and computing p̂ = x/8.

I ALTERNATIVE 2: The estimator consists of making trials until 3
successes have been observed, and letting x be the number of trials
needed for this outcome. Then one computes p̂ = 3/x .

I The two estimators have different properties! One is unbiased and
the other is biased.
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Example, cont.

I Let us for example assume that the real value for p is 0.6. We can
then study which distributions our two estimators have.

I ALTERNATIVE 1: We have X ∼ Binomial(8, 0.6). The possible
values for p̂ = X/8 and their probabilities are found in the table
below:

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
0.001 0.008 0.041 0.124 0.232 0.279 0.209 0.090 0.017

I The estimator has expectation 0.6; it is unbiased.

I ALTERNATIVE 2: We get X ∼ Neg-Binomial(3, 0.6). The possible
values for p̂ = 3/X and their probabilities are found in the table
below:

3/3 3/4 3/5 3/6 3/7 3/8 3/9 3/10 3/11
0.216 0.259 0.207 0.138 0.083 0.046 0.025 0.013 0.006

3/12 3/13 3/14 3/15 3/16,3/17,. . .
0.003 0.001 0.001 0.000 totalt 0.000

I The estimator has expectation 0.672. It is biased.
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