
MVE051/MSG810 2017 Lecture 8

Petter Mostad

Chalmers

November 22, 2017

Petter Mostad MVE051/MSG810 2017 Lecture 8



The Central Limit Theorem (CLT)

I Assume X1, . . . ,Xn is a random sample from a distribution with
expectation µ and variance σ2. Then, when n→∞, we get that

X ∼ Normal(µ, σ/
√
n)

I For finite n the normal distribution can be used as an approximation.
How large n needs to be for the approximation to be OK depends on
what accuracy is needed, and on the properties of the distribution
the Xi come from.

I Some distributions have no variance, then the CLT does not apply!
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The normal distribution as an approximation

I It is the mean value X that becomes approximately normally
distributed when the number of observations n increases. The
sample itself does not become normally distributed just because n
increases!

I However some random variables can be interpreted as a sum (or
mean) of many (independent) random variables. Then, in some
cases, they are well approximated by a normally distributed variable.

I Examples are:
I The Binomial distribution with n large and p not too close to 0 or 1.
I The Poisson distribution with a large intensity λ.
I The Gamma distribution with a large α parameters.
I The χ2 distribution with many degrees of freedom.

I In such cases, the table for the Normal distribution can be used to
compute approximate quantiles.
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Confidence intervals

I A 100(1− α)% confidence interval for a parameter θ is a formula
which from a random sample X1, . . . ,Xn computes random variables
L1 and L2 so that, for all θ,

Pr [θ ∈ [L1, L2]] = 1− α

I Correct interpretation of a confidence interval: If you generate N
new random samples from the same distribution and from these
compute N new confidence intervals according to the formula, then
100(1− α)% of these will contain θ as N →∞.

I WRONG interpreation of a confidence interval: Given a particular
sample x1, . . . , xn, you know with 95% probaility that θ is in the
confidence interval.

I However, if one interprets θ as a random variable and make certain
assumptions, the second interpretation can become correct. These
assumptions are often reasonable. This underlies the popularity of
the confidence interval in applications.
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Example 1: Confidence interval for µ in a Normal(µ, σ)
distribution

I If X1, . . . ,Xn ∼ Normal(µ, σ) is a random sample, if zα/2 is so that
[−zα/2, zα/2] contains 100(1− α)% of the probability in a standard
normal distribution, and if we define

L1 = X − zα/2σ/
√
n

L2 = X + zα/2σ/
√
n

then [L1, L2] is a 100(1− α)% confidence interval for µ.

I Note how we find zα/2 in the table for the standard normal
distribution. Traditionally we use α = 0.05, giving z0.05/2 = 1.96.

I Note: The formulas for L1 and L2 contain σ, so this interval can
only be used if σ2, the variance of the distribution, is known. (It is
not enough to compute the sample variance of the data).

I The proof is based on using that X ∼ Normal(µ, σ/
√
n).
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The distribution for the variance estimator S2 = σ̂2

I The confidence interval for µ was constructed based on knowing the
distribution for the estimator X for µ. In the same way we base a
confidence interval for σ2 on the estimator σ̂2.

I X1, . . . ,Xn ∼ Normal(µ, σ) and we define the estimator

S2 = σ̂2 =
1

n − 1

n∑
i=1

(Xi − X )2

the the distribution of this estimator satisfies

(n − 1)S2/σ2 ∼ χ2(n − 1),

i.e., (n − 1)S2/σ2 has a χ2 distribution with n − 1 degrees of
freedom.

I A proof can be constructed by (see Milton appendix C)
I first showing that S2 och X är independent random variables (e.g.,

use moment generating functions).
I then using this to compute the moment-generating function for

(n − 1)S2/σ2 and showing that it corresponds to that of the
χ2(n − 1) distribution.
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Example 2: Confidence interval for σ2

I If X1, . . . ,Xn ∼ Normal(µ, σ) is a random sample, if χ2
n−1,α/2 and

χ2
n−1,1−α/2 are so that [χ2

n−1,α/2, χ
2
n−1,1−α/2] contains 100(1− α)%

of the probability in a χ2(n − 1) distribution, and if we define

L1 = (n − 1)S2/χ2
n−1,1−α/2

L2 = (n − 1)S2/χ2
n−1,α/2

then [L1, L2] is a 100(1− α)% confidence interval for σ2.

I Note how we find χ2
n−1,1−α/2 and χ2

n−1,α/2 in the table for the

χ2(k) distribution.

I Note: The formulas for L1 och L2 do not contain µ so this interval
can be used even when µ is unknown.

I The proof is based on using that (n − 1)S2/σ2 ∼ χ2(n − 1).
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The (Student) t distribution

I The random variable X has a (Student) t distribution with γ degrees
of freedom, we write X ∼ T (γ), if the density is

f (x) =
Γ(γ + 1)/2

Γ(γ/2)
√
πγ

(
1 +

x2

γ

)−(γ+1)/2

I When γ →∞ the t distribution will approach a standard normal
distribution. When γ is smaller, the density is more pointy at the
center, and has ”heavier tails”, than the standard normal.

I We have E [X ] = 0 (if γ ≤ 1 the expectation does not exist) and
Var [X ] = γ/(γ − 2) (if γ ≤ 2 the variance does not exist).

I An important property: If Z ∼ Normal(0, 1) and X ∼ χ2(γ) are
independent, then

Z√
X/γ

∼ T (γ).

I Tables for the Student t distribution for various γ values are
available in Milton.
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The distribution for (X − µ)/(S/
√
n)

I Our earlier confidence interval for µ depended on σ. We now
construct a confidence interval for µ that depends on S2 instead.
We do this by studying a function of X och S2.

I If X1, . . . ,Xn ∼ Normal(µ, σ) is a random sample then

(X − µ)/(S/
√
n) ∼ T (n − 1)

In other words, the statistic has a t distribution with n − 1 degrees
of freedom.

I A proof can be based on
I X ∼ Normal(µ, σ/

√
n) .

I (n − 1)S2/σ2 ∼ χ2(n − 1)
I X and S2 are independent.
I The property of the t distribution mentioned on the previous

overhead.
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Example 3: A confidence interval for µ not depending on σ

I If X1, . . . ,Xn ∼ Normal(µ, σ) is a random sample, if tα/2 is so that
[−tα/2, tα/2] contains 100(1− α)% of the probability in a t
distribution with n − 1 degrees of freedom, and if we define

L1 = X − tα/2S/
√
n

L2 = X + tα/2S/
√
n

then [L1, L2] is a 100(1− α)% confidence interval for µ.

I Note how we find tα/2 in the table for the t distribution.

I The formulas for L1 and L2 do not contain σ, so this interval can be
used if the distribution variance σ2 is unknown.

I The proof is based on using that (X − µ)/(S/
√
n) ∼ T(n − 1).
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Example 4: Approximate confidence interval for µ based
on CLT and known σ

I If X1, . . . ,Xn is a random sample from a distribution with
expectation µ and variance σ2, if zα/2 is so that [−zα/2, zα/2]
contains 100(1− α)% of the probability in a standard normal
distribution, and if we define

L1 = X − zα/2σ/
√
n

L2 = X + zα/2σ/
√
n

then [L1, L2] is an approximate 100(1− α)% confidence interval for
µ if n is large.

I Note: To use this, the variance σ2 must exist.

I The proof uses that, for large n we have, approximately,
X ∼ Normal(µ, σ/

√
n).
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Example 5: Approximate confidence interval for µ based
on CLT

I If X1, . . . ,Xn is a random sample from a distribution with
expectation µ and variance σ2, if zα/2 is so that [−zα/2, zα/2]
contains 100(1− α)% of the probability in a standard normal
distribution, and if we define

L1 = X − zα/2S/
√
n

L2 = X + zα/2S/
√
n

where S is the sample standard deviation, then [L1, L2] is an
approximate 100(1− α)% confidence interval for µ if n is large.

I Motivation: For large n we have, approximately,
X ∼ Normal(µ, σ/

√
n) and also S ≈ σ.

I One may use tα/2 instead of zα/2, but the difference is small as n is
large.

I Note: For this to hold, the variance σ2 must exist. One can always
compute S from a sample, that S exists does not imply that σ exists!
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