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Test for expected value of normal distribution

I Assume X1, . . . ,Xn is a random sample from Normal(µ, σ) with µ, σ
unknown. Assume we want to compare H0 : µ = µ0 with
H1 : µ 6= µ0 for some fixed µ0.

I We choose as test statistic

T =
X − µ0

S/
√
n

which has a t distribution with n − 1 degrees of freedom when H0 is
true.

I The rejection region is all T so that T < −T0 or T > T0 for some
T0. To make the significance become α, we must choose

T0 = tα/2

where tα/2 is so that Pr
[
T > tα/2

]
= α/2 when T has a t

distribution with n − 1 degrees of freedom.

I Finally we compute our value for T , compare with T0, and decide to
reject H0 or not based on this.
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One-sided and two-sided tests

I The test in the example above is a two-sided test. An alternative is
a one-sided test, where for example H0 : µ ≤ µ0 and H1 : µ > µ0.

I The test statistic is the same, but the rejection region becomes all T
so that T > T0, where

T0 = tα

where tα is so that Pr [T < tα] = α when T has a t distribution
with n − 1 degrees of freedom.

I We use µ = µ0 to compute the significance.

I Correspondingly one can construct a one-sided test with H0 : µ ≥ µ0

and H1 : µ < µ0.
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Hypothesis testing

1. Two models are established: The Null hypothesis H0 and the
alternative hypothesis H1. (H1 is often what one ”wants to show
statistically”).

2. A test statistic T (i.e., a function of a random sample) is
established, so that

I The distribution of the test statistic T can be computed when H0 is
true.

I The test statistic has one type of values (often small) when H0 is true
and generally another type of values (often large) when H1 is true.

3. A rejection region F is established (generally one or more intervals)
and one decides to reject H0 if T is in F while H0 is not rejected if
T is not in F .

4. T is computed from observed data, compared with F , and rejected
or not based on this.
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Properties of hypothesis tests

I Type I and type II errors.

I We assume we can find the distribution of the test statistic T when
we assume H0 is true: Thus we can compute the probability of Type
I errors before data is observed. This probability is often denoted α,
and called the significance of the test. We often choose the rejection
region so that α = 0.05.

I Similarly, we write β for the probability for Type II errors. This
probability cannot always be computed as easily, without further
specifying H1. The strength of the test is 1− β.

I One tries to choose the test statistic maximizing the test strength
while the significance is fixed (often at α = 0.05).
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Interpreting a hypothesis test

I Correct interpretation: If you use the hypothesis test as a decision
rule, then in a (long) series of such decisions, you will reject a
proportion α of the correct H0 hypotheses.

I Note: A hypothesis test does not give you the probability that H0 or
H1 is true.

I Note: If you reject H0, it does not mean that H1 is true.

I Note: If you do not reject H0, it does not mean it is proven that H0

is true!

I Note: Wether you reject or not will not only depend on the data,
H0, and H1, but also on the choice of test statistic.
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Significance testing

I Significance testing represents a further development of the ideas of
hypothesis testing: Instead of first deciding a significance level α, we
compute the value of the test statistic on the data and then the
smallest significance level α which would make it possible to reject
H0 with this test statistic.

I This smallest significance level is called the p value of the test.

I Doing the previous hypothesis test with a significance level of 0.05
corresponds to first computing the p-value and then rejecting H0 if
the p value is 0.05 or less.
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Example: Significance testing for the expectation of a
normal distribution

I Assume X1, . . . ,Xn is a random sample from Normal(µ, σ) with µ, σ
unknown. Assume you would like to compare H0 : µ = µ0 with
H1 : µ 6= µ0 for some known µ0.

I We choose the same test statistic as before:

T =
X − µ0

S/
√
n

which has a t distribution with n − 1 degrees of freedom when H0 is
true.

I We compute the value of T for our data, find tα/2 so that
T = −tα/2 (if T < 0) or T = tα/2 (if T > 0), and use the table for
the t-distibution with n− 1 degrees of freedom to compute α, which
becomes the p value.

I In a corresponding way we can compute the p value for one-sided
tests.
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Interpretation of the p value

I A p-value will tell you something about how ”extreme” your data is
in the direction of indicating that H1 is true, compared to random
variations in data expected under H0.

I It is the probability of observing the observed T or ”something more
extreme” in the direction of H1, if H0 is true.

I Some wrong interpretations:
I The p value does NOT give you the probability that H0 is true.
I The p value cannot be directly related to the probability that H1 is

true.

I Remember that the p value may depend on the choice of test
statistic, and not only on the data and the hypotheses.
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Confidence interval for a proportion when n is large

I If X1, . . . ,Xn is a random sample where each Xi is 1 with probability
p and 0 otherwise, if zα/2 is so that [−zα/2, zα/2] contains
100(1− α)% of the probability in a standard normal distribution,
and if we define p̂ = X and

L1 = p̂ − zα/2
√
p̂(1− p̂)/n

L2 = p̂ + zα/2
√
p̂(1− p̂)/n

then [L1, L2] is an approximate 100(1− α)% confidence interval for
p when n is large.

I Proof: When n is large we have approximately
X ∼ Normal(p,

√
p(1− p)/n). When n is big we can even

approximate p(1− p) with p̂(1− p̂).
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Estimation of sample size

I Given a confidence interval where L1 and L2 depend on n, we can
ask: How large does n need to be for the confidence interval to be
shorter than some given number?

I Example 1: We want to estimate a proportion p and we have a
guess p̂. How large sample do we need for the length of the
confidence interval to be maxumum 2d?

n ≥ z2α/2
p̂(1− p̂)

d2

I Example 2: We want to estimate a proportion p without using a
guess. How large sample do we need for the length of the confidence
interval to be maximum 2d?

n ≥ z2α/2
1

4d2

This is based on that we always have p̂(1− p̂) ≤ 1/4 (as 0 ≤ p̂ ≤ 1).
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Hypothesis test for proportion, with n large

I (Example for comparison; not on exam)

I Assume X1, . . . ,Xn is a random sample with Xi equal to 1 with
probability p and otherwise 0. Assume we want to compare
H0 : p = p0 with H1 : p 6= p0 for some known p0.

I We write p̂ = X and choose as test statistic

p̂ − p0√
p0(1− po)/n

which approximately has a standard normal distribution when H0 is
true and n is large.

I The rejection region consists of all values outside [−zα/2, zα/2],

where zα/2 is so that Pr
[
Z > zα/2

]
= α/2 when Z has a standard

normal distribution.

I Correspondingly, one can do one-sided tests where we use zα instead
of zα/2, and significance tests, where we compute a p-value.
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Confidence interval for difference between proportions
when n is large

I If X1, . . . ,Xn1 och Y1, . . . ,Yn2 are random samples where each Xi is
1 with probaility p1 and 0 otherwise, and correspondingly for Yi and
p2, if zα/2 is so that [−zα/2, zα/2] contains 100(1− α)% of the

probability in a standard normal distribution, and if p̂1 = X , p̂2 = Y
and

L1 = p̂1 − p̂2 − zα/2
√
p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2

L2 = p̂1 − p̂2 + zα/2
√
p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2

then [L1, L2] is an approximative 100(1− α)% confidence interval for
p1 − p2 when n is large.

I Proof: When n is large we have, approximatively,
X − Y ∼ Normal(p1 − p2,

√
p1(1− p1)/n1 + p2(1− p2)/n2). When

n is large we can even approximate p1(1− p1) with p̂1(1− p̂1) and
p2(1− p2) with p̂2(1− p̂2) .
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