MVE051/MSG810 2017 Lecture 9

Petter Mostad

Chalmers

November 27, 2017

Test for expected value of normal distribution

- Assume X₁,..., X_n is a random sample from Normal(μ, σ) with μ, σ unknown. Assume we want to compare H₀ : μ = μ₀ with H₁ : μ ≠ μ₀ for some fixed μ₀.
- We choose as test statistic

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$

which has a t distribution with n-1 degrees of freedom when H_0 is true.

• The rejection region is all T so that $T < -T_0$ or $T > T_0$ for some T_0 . To make the significance become α , we must choose

$$T_0 = t_{\alpha/2}$$

where $t_{\alpha/2}$ is so that $\Pr[T > t_{\alpha/2}] = \alpha/2$ when T has a t distribution with n-1 degrees of freedom.

► Finally we compute our value for *T*, compare with *T*₀, and decide to reject *H*₀ or not based on this.

- ► The test in the example above is a *two-sided* test. An alternative is a *one-sided* test, where for example $H_0: \mu \le \mu_0$ and $H_1: \mu > \mu_0$.
- The test statistic is the same, but the rejection region becomes all T so that T > T₀, where

$$T_0 = t_{\alpha}$$

where t_{α} is so that $\Pr[T < t_{\alpha}] = \alpha$ when T has a t distribution with n - 1 degrees of freedom.

- We use $\mu = \mu_0$ to compute the significance.
- ► Correspondingly one can construct a one-sided test with H₀ : µ ≥ µ₀ and H₁ : µ < µ₀.

- 1. Two models are established: The *Null hypothesis* H_0 and the *alternative* hypothesis H_1 . (H_1 is often what one "wants to show statistically").
- 2. A *test statistic* T (i.e., a function of a random sample) is established, so that
 - The distribution of the test statistic T can be computed when H_0 is true.
 - ► The test statistic has one type of values (often small) when *H*₀ is true and generally another type of values (often large) when *H*₁ is true.
- 3. A rejection region F is established (generally one or more intervals) and one decides to reject H_0 if T is in F while H_0 is not rejected if T is not in F.
- 4. T is computed from observed data, compared with F, and rejected or not based on this.

- Type I and type II errors.
- We assume we can find the distribution of the test statistic T when we assume H_0 is true: Thus we can compute the probability of Type I errors before data is observed. This probability is often denoted α , and called the *significance* of the test. We often choose the rejection region so that $\alpha = 0.05$.
- Similarly, we write β for the probability for Type II errors. This probability cannot always be computed as easily, without further specifying H₁. The strength of the test is 1 β.
- One tries to choose the test statistic maximizing the test strength while the significance is fixed (often at $\alpha = 0.05$).

- Correct interpretation: If you use the hypothesis test as a decision rule, then in a (long) series of such decisions, you will reject a proportion α of the correct H_0 hypotheses.
- ► Note: A hypothesis test does not give you the probability that H₀ or H₁ is true.
- ▶ Note: If you reject H_0 , it does not mean that H_1 is true.
- ► Note: If you do not reject H₀, it does not mean it is proven that H₀ is true!
- Note: Wether you reject or not will not only depend on the data, H₀, and H₁, but also on the choice of test statistic.

- Significance testing represents a further development of the ideas of hypothesis testing: Instead of first deciding a significance level α, we compute the value of the test statistic on the data and then the smallest significance level α which would make it possible to reject H₀ with this test statistic.
- ▶ This smallest significance level is called the *p* value of the test.
- ▶ Doing the previous hypothesis test with a significance level of 0.05 corresponds to first computing the p-value and then rejecting H₀ if the p value is 0.05 or less.

Example: Significance testing for the expectation of a normal distribution

- Assume X₁,..., X_n is a random sample from Normal(μ, σ) with μ, σ unknown. Assume you would like to compare H₀ : μ = μ₀ with H₁ : μ ≠ μ₀ for some known μ₀.
- We choose the same test statistic as before:

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$

which has a t distribution with n-1 degrees of freedom when H_0 is true.

- ▶ We compute the value of T for our data, find $t_{\alpha/2}$ so that $T = -t_{\alpha/2}$ (if T < 0) or $T = t_{\alpha/2}$ (if T > 0), and use the table for the t-distibution with n 1 degrees of freedom to compute α , which becomes the p value.
- In a corresponding way we can compute the p value for one-sided tests.

- ► A p-value will tell you something about how "extreme" your data is in the direction of indicating that H₁ is true, compared to random variations in data expected under H₀.
- ► It is the probability of observing the observed T or "something more extreme" in the direction of H₁, if H₀ is true.
- Some wrong interpretations:
 - The p value does NOT give you the probability that H_0 is true.
 - The p value cannot be directly related to the probability that H_1 is true.
- Remember that the p value may depend on the choice of test statistic, and not only on the data and the hypotheses.

• If X_1, \ldots, X_n is a random sample where each X_i is 1 with probability p and 0 otherwise, if $z_{\alpha/2}$ is so that $[-z_{\alpha/2}, z_{\alpha/2}]$ contains $100(1-\alpha)\%$ of the probability in a standard normal distribution, and if we define $\hat{p} = \overline{X}$ and

$$\begin{array}{rcl} L_1 &=& \hat{p} - z_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n} \\ L_2 &=& \hat{p} + z_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n} \end{array} \end{array}$$

then $[L_1, L_2]$ is an *approximate* $100(1 - \alpha)\%$ confidence interval for p when n is large.

▶ Proof: When *n* is large we have approximately $\overline{X} \sim \text{Normal}(p, \sqrt{p(1-p)/n})$. When *n* is big we can even approximate p(1-p) with $\hat{p}(1-\hat{p})$.

Estimation of sample size

- ▶ Given a confidence interval where L₁ and L₂ depend on n, we can ask: How large does n need to be for the confidence interval to be shorter than some given number?
- Example 1: We want to estimate a proportion p and we have a guess p̂. How large sample do we need for the length of the confidence interval to be maxumum 2d?

$$n \ge z_{\alpha/2}^2 \frac{\hat{p}(1-\hat{p})}{d^2}$$

Example 2: We want to estimate a proportion p without using a guess. How large sample do we need for the length of the confidence interval to be maximum 2d?

$$n\geq z_{\alpha/2}^2\frac{1}{4d^2}$$

This is based on that we always have $\hat{p}(1-\hat{p}) \leq 1/4$ (as $0 \leq \hat{p} \leq 1$).

Hypothesis test for proportion, with n large

- (Example for comparison; not on exam)
- Assume X₁,..., X_n is a random sample with X_i equal to 1 with probability p and otherwise 0. Assume we want to compare H₀: p = p₀ with H₁: p ≠ p₀ for some known p₀.
- We write $\hat{p} = \overline{X}$ and choose as test statistic

$$rac{\hat{
ho}-
ho_0}{\sqrt{
ho_0(1-
ho_o)/n}}$$

which approximately has a standard normal distribution when H_0 is true and n is large.

- ► The rejection region consists of all values outside $[-z_{\alpha/2}, z_{\alpha/2}]$, where $z_{\alpha/2}$ is so that $\Pr[Z > z_{\alpha/2}] = \alpha/2$ when Z has a standard normal distribution.
- Correspondingly, one can do one-sided tests where we use z_α instead of z_{α/2}, and significance tests, where we compute a p-value.

Confidence interval for difference between proportions when n is large

• If X_1, \ldots, X_{n_1} och Y_1, \ldots, Y_{n_2} are random samples where each X_i is 1 with probaility p_1 and 0 otherwise, and correspondingly for Y_i and p_2 , if $z_{\alpha/2}$ is so that $[-z_{\alpha/2}, z_{\alpha/2}]$ contains $100(1 - \alpha)\%$ of the probability in a standard normal distribution, and if $\hat{p}_1 = \overline{X}$, $\hat{p}_2 = \overline{Y}$ and

$$\begin{array}{rcl} L_1 & = & \hat{p}_1 - \hat{p}_2 - z_{\alpha/2} \sqrt{\hat{p}_1(1-\hat{p}_1)/n_1 + \hat{p}_2(1-\hat{p}_2)/n_2} \\ L_2 & = & \hat{p}_1 - \hat{p}_2 + z_{\alpha/2} \sqrt{\hat{p}_1(1-\hat{p}_1)/n_1 + \hat{p}_2(1-\hat{p}_2)/n_2} \end{array}$$

then $[L_1, L_2]$ is an *approximative* $100(1 - \alpha)\%$ confidence interval for $p_1 - p_2$ when *n* is large.

▶ Proof: When *n* is large we have, approximatively, $\overline{X} - \overline{Y} \sim \text{Normal}(p_1 - p_2, \sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2})$. When *n* is large we can even approximate $p_1(1 - p_1)$ with $\hat{p}_1(1 - \hat{p}_1)$ and $p_2(1 - p_2)$ with $\hat{p}_2(1 - \hat{p}_2)$.