
Chapter 11

Markov Chains

11.1 Introduction

1. w(1) = (.5, .25, .25)

w(2) = (.4375, .1875, .375)

w(3) = (.40625, .203125, .390625)

2. P =

(

1 0
1
2

1
2

)

, P2 =

(

1 0
3
4

1
4

)

, P3 =

(

1 0
7
8

1
8

)

.

Pn =

(

1 0
2n−1
2n

1
2n

)

→

(

1 0
1 0

)

.

Whatever the President’s decision, in the long run each person will be told
that he or she is going to run.

3. Pn = P for all n.

4. .7.

5. 1

6. w(1) = w(2) = w(3) = w(n) = (.25, .5, .25).

7. (a) Pn = P

(b) Pn =

{

P, if n is odd,
I, if n is even.

8. P =

(

0 1

0 1− p p
1 p 1− p

)

.
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9. p2 + q2, q2,

(

0 1

0 p q
1 q p

)

11. .375

12. (a) P =









P SL UL NS

P .64 .08 .08 .2
SL .16 .48 .16 .2
UL .2 .2 .4 .2
NS 0 0 0 1









.

(b) .24.

19. (a) 5/6.

(b) The ‘transition matrix’ is

P =

(

H T

H 5/6 1/6
T 1/2 1/2

)

.

(c) 9/10.

(d) No. If it were a Markov chain, then the answer to (c) would be the same
as the answer to (a).

11.2 Absorbing Markov Chains

1. a = 0 or b = 0

2. H is the absorbing state. Y and D are transient states. It is possible to go
from each of these states to the absorbing state, in fact in one step.

3. Examples 11.10 and 11.11

4.

N =

(

Gg gg

GG 2 0
gg 2 1

)

.
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5. The transition matrix in canonical form is

P =

















GG,Gg GG, gg Gg,Gg Gg, gg GG,GG gg, gg

GG,Gg 1/2 0 1/4 0 1/4 0
GG, gg 0 0 1 0 0 0
Gg,Gg 1/4 1/8 1/4 1/4 1/16 1/16
Gg, gg 0 0 1/4 1/2 0 1/4
GG,GG 0 0 0 0 1 0
gg, gg 0 0 0 0 0 1

















.

Thus

Q =













GG,Gg GG, gg Gg,Gg Gg, gg

GG,Gg 1/2 0 1/4 0
GG, gg 0 0 1 0
Gg,Gg 1/4 1/8 1/4 1/4
Gg, gg 0 0 1/4 1/2
.













,

and

N = (I −Q)−1 =









GG,Gg GG, gg Gg,Gg Gg, gg

GG,Gg 8/3 1/6 4/3 2/3
GG, gg 4/3 4/3 8/3 4/3
Gg,Gg 4/3 1/3 8/3 4/3
Gg, gg 2/3 1/6 4/3 8/3









.

From this we obtain

t = Nc =









GG,Gg 29/6
GG, gg 20/3
Gg,Gg 17/3
Gg, gg 29/6









,

and

B = NR =









GG,GG gg, gg

GG,Gg 3/4 1/4
GG, gg 1/2 1/2
Gg,Gg 1/2 1/2
Gg, gg 1/4 3/4









.

6. The canonical form of the transition matrix is

P =





N S R

N 0 1/2 1/2
S 1/4 1/2 1/4
R 0 0 1



,
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N =

(

N S

N 4/3 4/3
S 2/3 8/3

)

,

t = Nc =

(

N 8/3
S 10/3

)

,

B = NR =

(

N 1
S 1

)

.

Here is a typical interpretation for an entry of N. If it is snowing today,
the expected number of nice days before the first rainy day is 2/3. The
entries of t give the expected number of days until the next rainy day.
Starting with a nice day this is 8/3, and starting with a snowy day it is
10/3. The entries of B reflect the fact that we are certain to reach the
absorbing state (rainy day) starting in either state N or state S.

7. N =





2.5 3 1.5
2 4 2
1.5 3 2.5





Nc =





7
8
7





B =





5/8 3/8
1/2 1/2
3/8 5/8





8. The transition matrix in canonical form is

P =













1 2 3 0 4

1 0 2/3 0 1/3 0
2 1/3 0 2/3 0 0
3 0 1/3 0 0 2/3
0 0 0 0 1 0
4 0 0 0 0 1 cr













,

N =





1 2 3

1 7/5 6/5 4/5
2 3/5 9/5 6/5
3 1/5 3/5 7/5



,

B = NR =





0 4

1 7/15 8/15
2 3/15 12/15
3 1/15 14/15



,
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t = NC =





1 17/5
2 18/5
3 11/5



.

9. 2.08

12.

P =





















ABC AC BC A B C none

ABC 5/18 5/18 4/18 0 0 4/18 0
AC 0 5/12 0 5/2 0 1/12 1/12
BC 0 0 10/18 0 5/18 2/18 1/18
A 0 0 0 1 0 0 0
B 0 0 0 0 1 0 0
C 0 0 0 0 0 1 0
none 0 0 0 0 0 0 1





















N =





1.385 .659 .692
0 1.714 0
0 0 2.25





Nc =





2.736
1.714
2.25





B =





A B C none

ABC .275 .192 .440 .093
AC .714 0 .143 .143
BC 0 .625 .25 .125





13. Using timid play, Smith’s fortune is a Markov chain with transition matrix

P =





























1 2 3 4 5 6 7 0 8

1 0 .4 0 0 0 0 0 .6 0
2 .6 0 .4 0 0 0 0 0 0
3 0 .6 0 .4 0 0 0 0 0
4 0 0 .6 0 .4 0 0 0 0
5 0 0 0 .6 0 .4 0 0 0
6 0 0 0 0 .6 0 .4 0 0
7 0 0 0 0 0 .6 0 0 .4
0 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 0 1





























.
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For this matrix we have

B =





















0 8

1 .98 .02
2 .95 .05
3 .9 .1
4 .84 .16
5 .73 .27
6 .58 .42
7 .35 .65





















.

For bold strategy, Smith’s fortune is governed instead by the transition
matrix

P =













3 4 6 0 8

3 0 0 .4 .6 0
4 0 0 0 .6 .4
6 0 .6 0 0 .4
0 0 0 0 1 0
8 0 0 0 0 1













,

with

B =





0 8

3 .744 .256
4 .6 .4
6 .36 .64



.

From this we see that the bold strategy gives him a probability .256 of
getting out of jail while the timid strategy gives him a smaller probability
.1. Be bold!

14. It is the same.

15. (a)

P =













3 4 5 1 2

3 0 2/3 0 1/3 0
4 1/3 0 2/3 0 0
5 0 2/3 0 0 1/3
1 0 0 0 1 0
2 0 0 0 0 1













.

(b)

N =





3 4 5

3 5/3 2 4/3
4 1 3 2
5 2/3 2 7/3



,

t =





3 5
4 6
5 5



,
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B =





1 2

3 5/9 4/9
4 1/3 2/3
5 2/9 7/9



.

(c) Thus when the score is deuce (state 4), the expected number of points to
be played is 6, and the probability that B wins (ends in state 2) is 2/3.

16.

















g,GG G,Gg g,Gg G, gg G,GG g, gg

g,GG 0 1 0 0 0 0
G,Gg .25 .25 .25 0 .25 0
g,Gg 0 .25 .25 .25 0 .25
G, gg 0 0 1 0 0 0
G,GG 0 0 0 0 1 0
g, gg 0 0 0 0 0 1

















,

N =







1.667 2.667 1.333 .333
.667 2.667 1.333 .333
.333 1.333 2.667 .667
.333 1.333 2.667 1.667






,

Nc =











6
5
5
6
,











B =







.667 .333

.667 .333

.333 .667

.333 .667






.

17. For the color-blindness example, we have

B =









G,GG g, gg

g,GG 2/3 1/3
G,Gg 2/3 1/3
g,Gg 1/3 2/3
G, gg 1/3 2/3









,

and for Example 9 of Section 11.1, we have

B =









GG,GG gg, gg

GG,Gg 3/4 1/4
GG, gg 1/2 1/2
Gg,Gg 1/2 1/2
Gg, gg 1/4 3/4









.
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In each case the probability of ending up in a state with all G’s is propor-
tional to the number of G’s in the starting state. The transition matrix
for Example 9 is

P =

















GG,GG GG,Gg GG, gg Gg,Gg Gg, gg gg, gg

GG,GG 1 0 0 0 0 0
GG,Gg 1/4 1/2 0 1/4 0 0
GG, gg 0 0 0 1 0 0
Gg,Gg 1/16 1/4 1/8 1/4 1/4 1/16
Gg, gg 0 0 0 1/4 1/2 1/4
gg, gg 0 0 0 0 0 1

















.

Imagine a game in which your fortune is the number of G’s in the state that
you are in. This is a fair game. For example, when you are in state Gg,gg
your fortune is 1. On the next step it becomes 2 with probability 1/4,
1 with probability 1/2, and 0 with probability 1/4. Thus, your expected
fortune after the next step is equal to 1, which is equal to your current
fortune. You can check that the same is true no matter what state you are
in. Thus if you start in state Gg,gg, your expected final fortune will be 1.
But this means that your final fortune must also have expected value 1.
Since your final fortune is either 4 if you end in GG,GG or 0 if you end
in gg, gg, we see that the probability of your ending in GG,GG must be
1/4.

18. (a)













1 2 3 F G

1 r p 0 q 0
2 0 r p q 0
3 0 0 r q p
F 0 0 0 1 0
G 0 0 0 0 1













(b) Expected time in second year = 1.09.

Expected time in med school = 3.3 years.

(c) Probability of an incoming student graduating = .67.

19. (a)

P =









1 2 0 3

1 0 2/3 1/3 0
2 2/3 0 0 1/3
0 0 0 1 0
3 0 0 0 1









.

(b)

N =

(

1 2

1 9/5 6/5
2 6/5 9/5

)

,
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B =

(

0 3

1 3/5 2/5
2 2/5 3/5

)

,

t =

(

1 3
2 3

)

.

(c) The game will last on the average 3 moves.

(d) If Mary deals, the probability that John wins the game is 3/5.

20. Consider the Markov chain with state i (for 1 ≤ i < k) the length of the
current run, and k an absorbing state. Then when in state i < k, the chain
goes to i + 1 with probability 1/m or to 1 with probability (m − 1)/m.
Thus, starting in state 1, in order to get to state j + 1 the chain must be
in state j and then move to j + 1. This means that

N1,j+1 = N1,j(1/m) ,

or
N1,j = mN1,j+1 .

This will be true also for j + 1 = k if we interpret N1,k as the number
of times that the chain enters the state k, namely, 1. Thus, starting
with N1,k = 1 and working backwards, we see that N1,j = mk−j for
j = 1, · · · , k. Therefore, the expected number of experiments until a run
of k occurs is

1 +m+m2 + · · ·+mk−1 =
mk − 1

m− 1
.

(The initial 1 is to start the process off.) Putting m = 10 and k = 9 we
see that the expected number of digits in the decimal expansion of π until
the first run of length 7 would be about 111 million if the expansion were
random. Thus we should not be surprised to find such a run in the first
100,000,000 digits of π and indeed there are runs of length 9 among these
digits.

21. The problem should assume that a fraction

qi = 1−
∑

j

qij > 0

of the pollution goes into the atmosphere and escapes.

(a) We note that u gives the amount of pollution in each city from today’s
emission, uQ the amount that comes from yesterday’s emission, uQ2 from
two days ago, etc. Thus

wn = u+ uQ+ · · ·uQn−1 .
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(b) Form a Markov chain with Q-matrix Q and with one absorbing state to
which the process moves with probability qi when in state i. Then

I+Q+Q2 + · · ·+Qn−1 → N ,

so
w(n) → w = uN .

(c) If we are given w as a goal, then we can achieve this by solving w = Nu

for u, obtaining
u = w(I−Q) .

22.

(a) The total amount of goods that the ith industry needs to produce $1 worth
of goods is

x1q1i + x2q2i + · · ·+ xnqni .

This is the i’th component of the vector xQ.

(b) By part (a) the amounts the industries need to meet their internal demands
is xQ. Thus to meet both internal and external demands, the companies
must produce amounts given by a vector x satifying the equation

x = xQ+ d .

(c) From Markov chain theory we can always solve the equation

x = xQ+ d

by writing it as
x(I−Q) = d

and then using the fact that (I−Q)N = I to obtain

x = dN .

(d) If the row sums of Q are all less than 1, this means that every industry
makes a profit. A company can rely directly or indirectly on a profit-
making company. If for any value of n, qnij > 0, then i depends at least
indirectly on j. Thus depending upon is equivalent in the Markov chain
interpretation to being able to reach. Thus the demands can be met if
every company is either profit-making or depends upon a profit-making
industry.

(e) Since x = dN, we see that

xc = dNc = dt .
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24. When the walk is in state i, it goes to i+ 1 with probability p and i− 1
with probability q. Condition (a) just equates the probability of winning
in terms of the current state to the probability after the next step. Clearly,
if our fortune is 0, then the probability of winning is 0, and if it is T , then
the probability is 1. Here is an instructive way (not the simplest way) to
see that the values of w are uniquely determined by (a), (b), and (c). Let
P be the transition matrix for our absorbing chain. Then these equations
state that

Pw = w .

That is, the column vectorw is a fixed vector forP. Consider the transition
matrix for an arbitrary Markov chain in canonical form and assume that
we have a vector w such that w = Pw. Multiplying through by P, we see
that P2w = w, and in general Pnw = w. But

Pn →

(

0 B

0 I

)

.

Thus

w =

(

0 B

0 I

)

w .

If we write

w =

(

wT

wA

)

,

where T is the set of transient states and A the set of absorbing states,
then by the argument above we have

w =

(

wT

wA

)

=

(

BwA

wA

)

.

Thus for an absorbing Markov chain, a fixed column vector w is determined
by its values on the absorbing states. Since in our example we know these
values are (0,1), we know that w is completely determined. The solutions
given clearly satisfy (b) and (c), and a direct calculation shows that they
also satisfy (a).

26. Again, it is easy to check that the proposed solution f(x) = x(n − x)
satisfies conditions (a) and (b). The hard part is to prove that these
equations have a unique solution. As in the case of Exercise 23, it is most
instructive to consider this problem more generally. We have a special
case of the following situation. Consider an absorbing Markov chain with
transition matrix P in canonical form and with transient states T and
absorbing statesA. Let f and g be column vectors that satisfy the following
system of equations

(

Q R

0 I

)(

f
A

0

)

+

(

g
A

0

)

=

(

f
A

0

)

,
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where g
A
is given and it is desired to determine f

A
. In our example, g

A

has all components equal to 1. To solve for f
A
we note that these equations

are equivalent to

Qf
A
+ g

A
= f

A
,

or

(I−Q)f
A
= g

A
.

Solving for f
A
, we obtain

f
A
= Ng

A
.

Thus f
A
is uniquely determined by g

A
.

27. Use the solution to Exercise 24 with w = f.

28. Using the program Absorbing Chain for the transition matrix corre-
sponding to the pattern HTH, we find that

t =





HT 6
H 8
∅ 10



 .

Thus E(T ) = 10. For the pattern HHH the transition matrix is

P =









HHH HH H ∅

HHH 1 0 0 0
HH .5 0 0 .5
H 0 .5 0 .5
∅ 0 0 .5 .5









.

Solving for t for this matrix gives

t =





HH 8
H 12
∅ 14



 .

Thus for this pattern E(T) = 14.

29. For the chain with pattern HTH we have already verified that the con-
jecture is correct starting in HT. Assume that we start in H. Then the
first player will win 8 with probability 1/4, so his expected winning is 2.
Thus E(T |H) = 10−2 = 8, which is correct according to the results given
in the solution to Exercise 28. The conjecture can be verified similarly
for the chain HHH by comparing the results given by the conjecture with
those given by the solution to Exercise 28.
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30. T must be at least 3. Thus when you sum the terms

P (T > n) = 2P (T = n+ 1) + 8P (T = n+ 3),

the coefficients of the 2 and the 8 just add up to 1 since they are all
possible probabilies for T . Let T be an integer-valued random variable.
We write

E(T ) = P (T = 1) + P (T = 2) + P (T = 3) + · · ·
+P (T = 2) + P (T = 3) + · · ·

+P (T = 3) + · · ·

If we add the terms by columns, we get the usual definition of expected
value; if we add them by rows, we get the result that

E(T ) =

∞
∑

n=0

P (T > n) .

That the order does not matter follows from the fact that all the terms in
the sum are positive.

31. You can easily check that the proportion of G’s in the state provides a
harmonic function. Then by Exercise 27 the proportion at the starting
state is equal to the expected value of the proportion in the final aborbing
state. But the proportion of 1s in the absorbing state GG,GG is 1. In the
other absorbing state gg, gg it is 0. Thus the expected final proportion is
just the probability of ending up in state GG,GG. Therefore, the proba-
bility of ending up in GG,GG is the proportion of G genes in the starting
state.(See Exercise 17.)

32. The states with all squares the same color are absorbing states. From
any non-absorbing state it is possible to reach any absorbing state corre-
sponding to a color still represented in the state. To see that the game is
fair, consider the following argument. In order to decrease your fortune
by 1 you must choose a red square and then choose a neighbor that is
not red. With the same probability you could have chosen the neighbor
and then the red square and your fortune would have been increased by
1. Since it is a fair game, if at any time a proportion p of the squares are
red, for example, then p is also the probability that we end up with all
red squares.

33. In each case Exercise 27 shows that

f(i) = biNf(N) + (1− biN )f(0) .

Thus

biN =
f(i)− f(0)

f(N)− f(0)
.

Substituting the values of f in the two cases gives the desired results.


