Marco Longfils and Petter Mostad
Applied Mathematics and Statistics
Chalmers and GU
MVE055 / MSG810 Matematisk statistik och diskret matematik
Exam 24 October 2017, 8:30-12:30
Allowed aids: Chalmers-approved calculator and one (two-sided) A4 sheet of paper with your own notes.
Total number of points: 30 . To pass, at least 12 points are needed.
Note: All answers should be motivated.

1 Solutions

1. (a) Consider $X=$ "number of men in the group", then X follows an hypergeometric distribution with parameters $N=13, n=4, r=5$. The answer is then

$$
\begin{equation*}
\operatorname{Pr}(X=2)=\frac{\binom{5}{2}\binom{8}{2}}{\binom{13}{4}}=0.3916 \tag{1}
\end{equation*}
$$

(b) We need to compute

$$
\begin{equation*}
\operatorname{Pr}(X=0)=\frac{\binom{5}{0}\binom{8}{4}}{\binom{13}{4}}=0.0979 \tag{2}
\end{equation*}
$$

(c) Denote by (F, F, M, M) the sequence of female,female, male, male extracted. The first female is picked randomly from a set of 13 people with 8 women. So the probability that the sequence starts with female is $\frac{8}{13}$. The second female has to be picked from a set of 12 people, as we have removed the first woman selected in the group, of which 7 are female. Similarly, the probabilities for picking the two men are respectively $\frac{5}{11}$ and $\frac{4}{10}$. Thus, the probability of the sequence (F, F, M, M) is given by

$$
\frac{8}{13} \frac{7}{12} \frac{5}{11} \frac{4}{10}=0.0653
$$

2. (a) The distribution of \bar{X} is $\operatorname{Normal}\left(\mu_{x}, \frac{\sigma_{x}}{\sqrt{n}}\right)$, thus the probability distribution is given by

$$
\begin{equation*}
f_{\bar{X}}(x)=\frac{1}{\sqrt{2 \pi \frac{\sigma_{x}^{2}}{n}}} \exp \left(-\frac{\left(x-\mu_{x}\right)^{2}}{2 \frac{\sigma_{x}^{2}}{n}}\right) \tag{3}
\end{equation*}
$$

(b) The distribution of $\bar{X}-\bar{Y}$ is $\operatorname{Normal}\left(\mu_{x}-\mu_{y}, \sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}\right.$), thus the probability distribution is given by

$$
\begin{equation*}
f_{\bar{X}-\bar{Y}}(z)=\frac{1}{\sqrt{2 \pi\left(\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}\right)}} \exp \left(-\frac{\left(z-\mu_{x}+\mu_{y}\right)^{2}}{2\left(\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}\right)}\right) \tag{4}
\end{equation*}
$$

(c) From the previous point, and given that if $Z \sim \operatorname{Normal}(\mu, \sigma)$ then $\frac{Z-\mu}{\sigma} \sim \operatorname{Normal}(0,1)$, we conclude that the denominator should be the standard deviation of $\bar{X}-\bar{Y}$, so the random variable is

$$
\frac{\bar{X}-\bar{Y}-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{\sigma_{x}^{x}}{n}+\frac{\sigma_{x}^{2}}{m}}}
$$

(d) We know that

$$
\begin{equation*}
\operatorname{Pr}\left(-1.96 \leq \frac{\bar{X}-\bar{Y}-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}} \leq 1.96\right)=0.95 \tag{5}
\end{equation*}
$$

which means

$$
\begin{equation*}
\operatorname{Pr}\left(-1.96 \sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}} \leq \bar{X}-\bar{Y}-\left(\mu_{x}-\mu_{y}\right) \leq 1.96 \sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}\right)=0.95 \tag{6}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\operatorname{Pr}\left(\bar{X}-\bar{Y}-1.96 \sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}} \leq\left(\mu_{x}-\mu_{y}\right) \leq \bar{X}-\bar{Y}+1.96 \sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}\right)=0.95 \tag{7}
\end{equation*}
$$

and finally we find

$$
L_{1}=\bar{X}-\bar{Y}-1.96 \sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}, \quad L_{2}=\bar{X}-\bar{Y}+1.96 \sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}
$$

3. Define the following events:

- $\mathrm{HD}=$ the person has the disease, $\operatorname{Pr}(H D)=0.01, \operatorname{Pr}\left(H D^{c}\right)=0.99\left(H D^{c}\right.$ means healthy);
- $\mathrm{TP}=$ the test is positive, $\operatorname{Pr}(T P \mid H D)=0.8, \operatorname{Pr}\left(T P \mid H D^{c}\right)=0.05$
(a)

$$
\begin{align*}
\operatorname{Pr}(T P)= & \operatorname{Pr}(T P \cap H D)+\operatorname{Pr}\left(T P \cap H D^{c}\right)= \\
& \operatorname{Pr}(T P \mid H D) \operatorname{Pr}(H D)+\operatorname{Pr}\left(T P \mid H D^{c}\right) \operatorname{Pr}\left(H D^{c}\right)=0.8 * 0.01+0.05 * 0.99=0.0575 \tag{8}
\end{align*}
$$

(b)

$$
\begin{equation*}
\operatorname{Pr}(H D \mid T P)=\frac{\operatorname{Pr}(T P \cap H D)}{\operatorname{Pr}(T P)}=\frac{\operatorname{Pr}(T P \mid H D) \operatorname{Pr}(H D)}{\operatorname{Pr}(T P)}=\frac{0.8 * 0.01}{0.0575}=0.1391 \tag{9}
\end{equation*}
$$

4. (a) The transition matrix is

$$
P=\left[\begin{array}{ccccc}
1 & 0 & \ldots & & 0 \\
0.75 & 0 & 0.25 & \ldots & 0 \\
\vdots & \ddots & & & \\
0 & \ldots & 0.75 & 0 & 0.25 \\
0 & \ldots & 0 & 0.75 & 0.25
\end{array}\right]
$$

(b) For $N=2$,

$$
P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.75 & 0 & 0.25 \\
0 & 0.75 & 0.25
\end{array}\right]
$$

thus

$$
N=\left[\begin{array}{cc}
\frac{4}{3} & \frac{4}{9} \\
\frac{4}{3} & \frac{16}{9}
\end{array}\right]
$$

and $N[1,1]^{T}=\left[\frac{16}{9}, \frac{28}{9}\right]^{T}$. Thus, the expected time to extiction if the initial state is $X_{0}=2$ is $\frac{28}{9}$.
(c) Consider $Y_{n}=\max \left\{X_{0}, \ldots, X_{n}\right\} . Y_{n}$ is not a Markov chain as the future is not independent of the past. Consider X_{n} as above with $X_{0}=2$ and $N=3$, and take $Y_{n}=1$ for some integer n, thus the maximum state reached by $X_{m}, m \leq n$ is 1 . Now the probability that at the next step Y_{n+1} is equal to 2 , correspond to the probability that $X_{n+1}=2$. This probability, depends on all the $X_{m}, m \leq n$. In fact, consider the case in which we have $X_{0}=2, X_{1}=1, X_{2}=0$, i.e. we get extinct as fast as possible. Then the probability that $Y_{3}=2$ is zero, as the population cannot grow if there is no one left. On the other hand, consider $X_{0}=2, X_{1}=1, X_{2}=2$ (one death followed by a birth). Then $Y_{3}=2$ happens if we get a birth, i.e. with probability 0.25 . Thus, the past has an effect on the future.
5. (a)

$$
P(Y=y)=\binom{n}{y} p^{y}(1-p)^{n-y}, \quad y=0, \ldots, n
$$

(b)

$$
\begin{align*}
\operatorname{Pr}[X=n]= & \sum_{k=0}^{n} P\left(X_{A}=k, X_{B}=n-k\right)=\sum_{k=0}^{n} P\left(X_{A}=k\right) P\left(X_{B}=n-k\right)= \\
& \sum_{k=0}^{n} e^{-\lambda_{A}} \frac{\lambda_{A}^{k}}{k!} e^{-\lambda_{B}} \frac{\lambda_{B}^{n-k}}{(n-k)!}=e^{-\left(\lambda_{A}+\lambda_{B}\right)} \sum_{k=0}^{n} \frac{\lambda_{A}^{k}}{k!} \frac{\lambda_{B}^{n-k}}{(n-k)!}= \tag{10}\\
& e^{-\left(\lambda_{A}+\lambda_{B}\right)} \sum_{k=0}^{n}\binom{n}{k} \frac{1}{n!} \lambda_{A}^{k} \lambda_{B}^{n-k}=e^{-\left(\lambda_{A}+\lambda_{B}\right)} \frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k} \lambda_{A}^{k} \lambda_{B}^{n-k}= \\
= & e^{-\left(\lambda_{A}+\lambda_{B}\right)} \frac{\left(\lambda_{A}+\lambda_{B}\right)^{n}}{n!}
\end{align*}
$$

where in the last passage we used the hint:

$$
\begin{equation*}
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{(n-k)} \tag{11}
\end{equation*}
$$

(c)

$$
\begin{align*}
P\left[X_{A}=k \mid X=n\right]= & \frac{P\left(X_{A}=k, X=n\right)}{P(X=n)}=\frac{P\left(X_{A}=k, X_{B}=n-k\right)}{P(X=n)}= \\
& =\frac{e^{-\lambda_{A} \frac{\lambda_{A}^{k}}{k!}} e^{-\lambda_{B}} \frac{\lambda_{B}^{n-k}}{(n-k)!}}{e^{-\left(\lambda_{A}+\lambda_{B}\right) \frac{\left(\lambda_{A}+\lambda_{B}\right)^{n}}{n!}}=\binom{n}{k} \frac{\lambda_{A}^{k}}{\left(\lambda_{A}+\lambda_{B}\right)^{k}} \frac{\lambda_{B}^{n-k}}{\left(\lambda_{A}+\lambda_{B}\right)^{n-k}}=} \tag{12}\\
& =\binom{n}{k}\left(\frac{\lambda_{A}}{\left(\lambda_{A}+\lambda_{B}\right)}\right)^{k}\left(1-\frac{\lambda_{A}}{\left(\lambda_{A}+\lambda_{B}\right)}\right)^{n-k}
\end{align*}
$$

We obtained a binomial distribution with probability of success equal to $\frac{\lambda_{A}}{\left(\lambda_{A}+\lambda_{B}\right)}$.
6. Assume the continuous random variable has a probability distribution with expectation μ and variance σ^{2}, and assume X_{1}, \ldots, X_{n} is a random sample from this distribution.
(a)

$$
\begin{equation*}
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \tag{13}
\end{equation*}
$$

(b)

$$
\begin{equation*}
E\left[\left(X_{1}-\bar{X}\right)^{2}\right]=\operatorname{Var}\left(X_{1}-\bar{X}\right)+\left(E\left[X_{1}-\bar{X}\right]\right)^{2} \tag{14}
\end{equation*}
$$

where the second term on the right hand side above is

$$
\begin{equation*}
E\left[X_{1}-\bar{X}\right]=E\left[X_{1}\right]-\frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right]=\mu-\frac{n \mu}{n}=0 \tag{15}
\end{equation*}
$$

and by using independence we handle the first term

$$
\begin{align*}
\operatorname{Var}\left(X_{1}-\bar{X}\right) & =\operatorname{Var}\left(\frac{n-1}{n} X_{1}-\frac{1}{n} \sum_{i=2}^{n} X_{i}\right)=\operatorname{Var}\left(\frac{n-1}{n} X_{1}\right)+\operatorname{Var}\left(\frac{1}{n} \sum_{i=2}^{n} X_{i}\right) \tag{16}\\
& =\left(\frac{n-1}{n}\right)^{2} \sigma^{2}+\frac{n-1}{n^{2}} \sigma^{2}=\frac{n-1}{n} \sigma^{2}
\end{align*}
$$

(c)

$$
\begin{equation*}
E\left[s^{2}\right]=\frac{1}{n-1} \sum_{i=1}^{n} E\left[\left(X_{i}-\bar{X}\right)^{2}\right]=\frac{1}{n-1} n \frac{n-1}{n} \sigma^{2}=\sigma^{2} \tag{17}
\end{equation*}
$$

and thus is an unbiased estimator.

