Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19

Föreläsning 13

Nancy Abdallah

Chalmers - Göteborgs Universitet

May 21, 2019

Regression

- Regression is a technique used for estimating relationship between variables.
- The regression is said to be linear if the relationship is linear.
- Often we want to predict a variable Y (the dependent variable) in terms of another variable X (the independent variable). X is usually not random.
- For a fixed value x of X, Y may take several values, and hence is a random variable denoted by Y|x (Y given that X = x). The mean of Y|x is denoted by µ_{Y|x}.

Linear Regression

The linear curve of regression of Y on X is given by

$$\mu_{Y|x} = \beta_0 + \beta_1 x$$

Given a set of data (x_i, y_i) where x_i is an observed value of X and y_i is the value of Y|x_i for i = 1, ··· , n. The simple linear regression model is given by

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

 ϵ_i are called the residuals.

•
$$\epsilon_i = \mu_{Y|x} - y_i$$
 and $\sum_{i=1}^n \epsilon_i = 0$.

The values (x_i, y_i) can be illustrated by a scattergram.

- β_0 and β_1 are estimated by the method of least-squares which is done by minimizing $SSE = \sum_{i=1}^{n} \epsilon_i^2$.
- Let b_0 and b_1 be estimates for β_0 and β_1 respectively. Then,

$$b_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}},$$

and

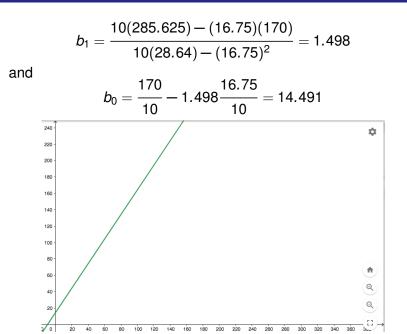
$$b_0 = \overline{y} - b_1 \overline{x}$$

Example

Let X denote the number of lines of executable SAS code, and let Y denote the execution time in seconds. The following is a summary information:

$$n = 10 \quad \sum_{i=1}^{10} x_i = 16.75 \quad \sum_{i=1}^{10} y_i = 170$$
$$\sum_{i=1}^{10} x_i^2 = 28.64 \quad \sum_{i=1}^{10} y_i^2 = 2898 \quad \sum_{i=1}^{10} x_i y_i = 285.625$$

Estimate the line of regression.



5/14

Properties of least-squares estimators

- Since b_0 , b_1 and ϵ_i vary with the data, we can define B_0 , B_1 and E_i the corresponding random variables. E_i is assumed to be normally distributed with mean 0 and variance σ^2 .
- We assume the following:
 - Y_i are independently and normally distributed.
 - The mean of Y_i is $\beta_0 + \beta_1 x_i$.
 - The variance of Y_i is σ^2 .
- We are interested of studying *B*₀ and *B*₁ (distribution, confidence intervals and hypothesis testing).

(Review properties of summation page 388).

Distribution of B_0 and B_1

 Using summation properties, we can rewrite B₁ as a weighted sum of Y_i's. Hence B₁ is normally distributed with parameters

$$E[B_1] = \beta_1$$
 and $V[B_1] = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$

■ *B*₀ is also normally distributed with parameters

$$E[B_0] = \beta_0$$
 and $V[B_0] = \frac{\sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \overline{x})} \sigma^2$

Since σ² is usually unknown, we use an estimate s².
 An unbiased estimator for σ² is given by

$$s^2 = \frac{SSE}{n-2} = \frac{\sum_{i=1}^n \epsilon_i}{n-2}$$

Another way of writing the formulas - summary-p.393

• Let
$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \left(n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right)/n$$
,
 $S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \left(n \sum_{i=1}^{n} y_i^2 - \left(\sum_{i=1}^{n} y_i\right)^2\right)/n$ and
 $S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$
 $\left(n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i\right)/n$.
• $B_1 = \frac{S_{xy}}{S_{xx}}$ with variance $V[B_1] = \frac{\sigma^2}{S_{xx}}$.
• $B_0 = \overline{y} - B_1 \overline{x}$ with variance $V[B_0] = \frac{\sum_{i=1}^{n} x_i^2 \sigma^2}{nS_{xx}}$.
• $SSE = \sum_{i=1}^{n} \epsilon_i^2 = S_{yy} - b_1 S_{xy}$
• $S^2 = \frac{SSE}{n-2}$, estimator for σ^2 .

Inferences on β_1

Since
$$B_1 \sim N(\beta_1, \sigma^2/S_{xx})$$
, then $\frac{B_1 - \beta_1}{\sigma/\sqrt{S_{xx}}} \sim N(0, 1)$

- Since σ^2 is usually unknown, we estimate it by S^2 . In this case, $\frac{B_1 \beta_1}{S/\sqrt{S_{xx}}}$ follows a *T* distribution with n 2 degrees of freedom.
- A $100(1 \alpha)\%$ confidence interval on β_1 is given by

$$B_1 \pm t_{1-\alpha/2} S / \sqrt{S_{xx}}$$

In hypothesis testing $(H_1 : \beta_1 \neq \beta_1^0$, or $\beta_1 < \beta_1^0$ or $\beta_1 > \beta_1^0$), the test statistic is

$$T=\frac{B_1-\beta_1^0}{S/\sqrt{S_{xx}}}$$

(Usually we take $\beta_1^0 = 0$ if we want to study if there is any significance relation between *X* and *Y*)

Example

Consider the previous example and suppose we want to see if there is a relation between *X* and *Y* with a significance level $\alpha = 5\%$. There is a relation between *X* and *Y* if and only if $\beta_1 \neq 0$, which is our alternative hypothesis. Let $H_0 : \beta_1 = 0$. We have a two tailed test $b_1 = 1.498$,

 $S_{xx} = \left(n\sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right)/n = 0.584 \ S_{yy} = 8 \text{ and}$ $S_{xy} = 0.875.$ Therefore, SSE = 8 - 1.498(0.875) = 6.69 and $s^2 = SSE/8 = 0.84$ The test statistic is

$$T = \frac{b_1 - 0}{\sqrt{S^2 / S_{xx}}} = \frac{1.498}{\sqrt{0.84 / 0.584}} = 1.25$$

 $t_{0.975} = 2.306$. Hence, we do not reject the hypothesis. We cannot conclude that there is a relation between *X* and *Y*.

Inferences on β_0

• Since
$$B_0 \sim N(\beta_0, \sigma^2 \sum_{i=1}^n x_i^2 / nS_{xx})$$
, then

$$\frac{B_0 - \beta_0}{\sigma \sqrt{\sum_{i=1}^n x_i^2} / \sqrt{nS_{xx}}} \sim N(0, 1)$$

• After estimate σ^2 by s^2 , we get that

$$\frac{B_0 - \beta_0}{S\sqrt{\sum_{i=1}^n x_i^2}/\sqrt{nS_{xx}}}$$

follows a *T* distribution with n-2 degrees of freedom.

Inferences on β_0

A $100(1 - \alpha)\%$ confidence interval on β_1 is given by

$$B_0 \pm t_{(1-\alpha/2)} S_{\sqrt{\sum_{i=1}^n x_i^2}} / \sqrt{nS_{xx}}$$

The test statistic for hypothesis testing is

$$T = \frac{B_0 - \beta_0^0}{S\sqrt{\sum_{i=1}^n x_i^2}/\sqrt{nS_{xx}}}$$

Example

A 95% C.I. on β_0 in our previous example is given by

 $14.491 \pm 2.306\sqrt{0.84(28.64)/5.84}$

$$(14.491 - 4.68, 14.491 + 4.68)$$

(9.81, 19.181)

We are 95% sure that the true regression line crosses the y-axis between the points y = 9.81 and y = 19.81.

Inferences about estimated mean and single predicted value

- Given a new value x of X, we want to estimate the values $\mu_{Y|x}$ and Y|x.
- A point estimate for $\mu_{Y|x}$ and Y|x is given by

$$\hat{Y}|x = \hat{\mu}_{Y|x} = b_0 + b_1 x$$

A $100(1 - \alpha)$ % C.I. on $\mu_{Y|x}$ is given by

$$\hat{\mu}_{Y|x} \pm t_{(1-\alpha/2)}S\sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{S_{xx}}}$$

A $100(1 - \alpha)$ % C.I. on $\mu_{Y|x}$ is given by

$$\hat{Y}|x \pm t_{(1-\alpha/2)}S\sqrt{1+\frac{1}{n}+\frac{(x-\overline{x})^2}{S_{xx}}}$$