## Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19

Föreläsning 8

Nancy Abdallah

Chalmers - Göteborgs Universitet

May 7, 2019

## Interval Estimate - Confidence Intervals

If we draw a random sample of size *n* from a population, then  $\overline{x}$  is a point estimate of  $\mu$ . It is more meaningful to estimate  $\mu$  by an interval that we call confidence interval.

How to construct a Confidence Interval?

## Sampling from a normally distributed population

Suppose that the population is normally distributed with mean  $\mu$  and variance  $\sigma^2$ , and let  $X_1, \ldots, X_n$  be a random sample.

- The mean  $\overline{X}$  is normally distributed with mean  $\mu$  and variance  $\sigma^2/n$ .
- The interval (μ − 1.96 σ/√n, μ + 1.96 σ/√n) contains 95% of the sample means. (If we draw a sample of size n, the probability that its mean falls into the interval (μ − 1.96 σ/√n, μ + 1.96 σ/√n) is 0.95). We have seen this result with 2 instead of 1.96. 1.96 is more precise).
- μ is usually unknown. We use intervals involving the sample mean x̄ instead.
- 95% of the intervals  $(\overline{x} 1.96 \frac{\sigma}{\sqrt{n}}, \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}})$  contain the mean  $\mu$ . This interval is called a 95% Confidence Interval (C.I.).

Suppose a researcher, interested in obtaining an estimate of the average level of some enzyme in a certain human population, takes a sample of 10 individuals, determines the level of the enzyme in each, and computes a sample mean of  $\overline{x} = 22$ . Suppose further it is known that the variable of interest is approximately normally distributed with a variance of 45. Find a 95% interval confidence of  $\mu$ .

**Solution** We Need to find the interval  $(\overline{x}-1.96\sigma/\sqrt{n}, x+1.96\sigma/\sqrt{n})$ .  $\sigma/\sqrt{n} = \sqrt{45/10} = 2.1213$ , then the interval is

$$(22 - 1.96(2.1213), 22 + 1.96(2.1213))$$

which is

# Confidence interval of $\overline{x}$ from a normally distributed population with known $\sigma$

In general, a  $100(1 - \alpha)$  confidence interval is given by

$$\overline{x} \pm z_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}}$$

where  $z_{(1-\alpha/2)}$  is the value of *z* for which  $P(z \le z_{(1-\alpha/2)}) = 1 - \frac{\alpha}{2}$  in the standard normal distribution and is called the **the reliability coefficient**.

In the book,  $z_{\alpha/2}$  is used instead, and it means the value of z for which  $P(z \ge z_{\alpha/2}) = 1 - \alpha$ . The C.I. can be written as

estimator  $\pm$  (reliability coefficient)  $\times$  (standard error)

## Interpretation

- Probabilistic Interpretation: In repeated sampling, from a normally distributed population with a known standard deviation,  $100(1 \alpha)$  percent of all intervals of the form  $\overline{x} \pm z_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}}$  will in the long run include the population mean  $\mu$ .
- **Practical Interpretation:** When sampling is from a normally distributed population with known standard deviation, we are  $100(1 \alpha)$  percent confident that the single computed interval,  $\overline{x} \pm z_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}}$ , contains the population mean  $\mu$ .

A physical therapist wished to estimate, with 99 percent confidence, the mean maximal strength of a particular muscle in a certain group of individuals. He is willing to assume that strength scores are approximately normally distributed with a variance of 144. A sample of 15 subjects who participated in the experiment yield a mean of 84.3.

**Solution**  $\alpha = 0.01$ . We need to find  $z_{1-\alpha/2}$ , i.e. *z* such that  $P(z < z_{1-\alpha/2}) = 0.995$ . Using the table, we get  $z_{1-\alpha/2} = 2.58$ . Therefore, a 99% confidence interval is

$$(84.3 - (2.58)\sqrt{144/15}, 84.3 + (2.58)\sqrt{144/155})$$

which is

## Sampling from non-normal distribution

Usually the distribution of the population is not normal or is not even known. How do we construct a confidence interval in this case?

#### Definition (The central limit theorem)

Let  $X_1, \ldots, X_n$  be a random sample of size *n* from a distribution with mean  $\mu$  and variance  $\sigma^2$ . Then for large *n*,  $\overline{X}$  is approximately normal with mean  $\mu$  and variance  $\sigma^2/n$ .

*Remark n* is considered large if  $n \ge 25$ .

Punctuality of patients in keeping appointments is of interest to a research team. In a study of patient flow through the offices of general practitioners, it was found that a sample of 35 patients was 17.2 minutes late for appointments, on the average. Previous research had shown the standard deviation to be about 8 minutes. The population distribution was felt to be nonnormal.

- 1 Approximate the distribution of the sample mean  $\overline{X}$ . What are the parameters?
- 2 What is the 90 percent confidence interval for  $\mu$ , the true mean amount of time late for appointments?

### Example (Solution)

- Since  $n \ge 25$  then  $\overline{X}$  is approximately normally distributed with mean equals to the population mean  $\mu$  (unknown) and standard deviation  $\sigma/\sqrt{n} = 8/\sqrt{35} = 1.3522$
- 2 We need to find first  $z_{1-\alpha/2} = z_{0.95}$ . Using the table of standard normal distribution we get  $z_{0.95=1.645}$ . Hence, a 90% confidence interval is given by

```
(17.2 - 1.645(1.3522), 17.2 + 1.645(1.3522))
```

which is

(15.0, 19.4)

## Distribution for population variance

Let  $X_1, \ldots, X_n$  be a random sample. Recall that  $S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$  is an unbiased estimate for the variance  $\sigma^2$ .

#### Theorem

Suppose that  $X_1, \ldots, X_n$  are drawn from a normal distribution with mean  $\mu$  and variance  $\sigma^2$ . The random variable

$$(n-1)S^2/\sigma^2 = \sum_{i=1}^n (X_i - \overline{X})^2/\sigma^2$$

has a chi-squared distribution with n-1 degrees of freedom.

## Confidence Interval for population variance

■ To find a  $100(1 - \alpha)$ % C.I. for  $\sigma^2$ , we find first a  $100(1 - \alpha)$ % C.I. for  $(n - 1)S^2/\sigma^2$ . A C.I. for  $(n - 1)S^2/\sigma^2$  is given by

$$(\chi^2_{\alpha/2'},\chi^2_{1-\alpha/2})$$

i.e. 
$$P(\chi^2_{\alpha/2} \le (n-1)S^2/\sigma^2 \le \chi^2_{1-\alpha/2}) = 1-\alpha$$

By using operation on inequalities, we obtain the C.I on  $\sigma^2$ . A 100(1 –  $\alpha$ )% C.I. for  $\sigma^2$  is then

$$\left(\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}},\frac{(n-1)S^2}{\chi^2_{\alpha/2}}\right)$$

Given the following data

```
9.7, 12.3, 11.2, 5.1, 24.8, 14.8, 17.7
```

Find a 95% confidence interval for the variance and for the standard deviation.

**Solution** The sample variance is  $s^2 = 39.763$ . The degrees of freedom are n - 1 = 6 and  $\alpha = 0.05$ . From the table, we get  $\chi^2_{0.025} = 1.237$  and  $\chi^2_{0.975} = 14.449$ . Hence, our 95% C.I for  $\sigma^2$  is  $\left(\frac{6(39.763)}{14.449}, \frac{6(39.763)}{1.237}\right) = (16.512, 192.868)$ 

and the 95% C.I. for  $\sigma$  is

(4.063, 13.888)

## Student T-distribution

Let Z and X be independent random variables such that  $Z \in N(0, 1)$  and  $X \in \chi^2_{\gamma}$ . Then

$$T = rac{Z}{\sqrt{\chi^2/\gamma}}$$

is said to have a Student T distribution with  $\gamma$  degrees of freedom.

Properties of T-distribution:

- The graph of the density function is a bell-shape symmetrical about the mean which is equal to 0.
- It approaches the normal distribution as n increases.
- The variance of the t distribution is greater than 1. If df > 2, the variance is equal to  $\frac{df}{df-2}$  where *df* is the degrees of freedom.

# Confidence interval of $\overline{x}$ from a normally distributed population with unknown $\sigma$

Let  $X_1, \ldots, X_n$  be a random sample drawn from a normally distributed population with unknown  $\mu$  and  $\sigma$ .

- It is easy to show that  $\frac{\overline{X}-\mu}{S/\sqrt{n}}$  follows a *T* distribution with n-1 degrees of freedom.
- To find a  $100(1 \alpha)$ % C.I., we use the same method as for the normal distribution, i.e.

$$\overline{x} \pm t_{(1-\alpha/2)} s / \sqrt{n}$$

where  $\overline{x}$  is the mean of the sample, *s* its standard deviation, and  $t_{(1-\alpha/2)}$  is the value of *t* for which  $P(t < t_{(1-\alpha/2)}) = 1 - \alpha/2$ .

The values of *t* can be found using table VI p.699-700.

A set of data on the sulfur dioxide concentration (in micrograms per cubic meter) in a Bavarian forest has been collected. The sample contains 24 values, it mean is  $53.92 \ \mu g/m^3$ , the sample variance is 101.480 and the standard deviation is  $10.07 \ \mu g/m^3$ . To obtain a 95% C.I. we find  $t_{(1-\alpha/2)}$  from the table.  $t_{0.975} = 2.069$ . Hence, a 95% C.I. is given by

$$(53.93 - 2.069(10.07)/\sqrt{24}, 53.93 + 2.069(10.07)/\sqrt{24})$$

which is equal to

## Summary - C.I. for the population mean

