Petter Mostad Mathematical Statistics Chalmers and GU

MVE055/MSG810 Mathematical statistics and discrete mathematics MVE055/MSG810 Matematisk statistik och diskret matematik

Re-exam: 24 August 2016, 14:00 - 18:00

Jour: Roza Maghsood

Allowed aids: A Chalmers-approved calculator and at most one (double-sided) A4 page of personal notes. Some tables of statistical distributions are provided.

Grading: This exam can give a maximum of 30 points. For full points, each answer must be motivated. Points from VLE tests autumn 2015 will be added. To pass, a minimum of 12 points is needed.

Language: You may write your answers in either English or Swedish.

- 1. (4 points) Out of six machines, three have defects. They are tested in a random order.
 - (a) Compute the probability that all three defect machines are found after four tests have been done.
 - (b) Compute the probability that, first, two defect machines are found, then, two non-defect machines, and then the last defect machine is found.
- 2. (2 points) Assume one wants to find out what proportion of fish in a lake has contains levels of some pollutant above some threshold. Out of 23 tested fish, 9 had levels above the threshold. Compute a 95% confidence interval for the true proportion. (2 points)
- 3. (3 points) A set of 7 observations has average 7.43 and sample variance 0.039.
 - (a) Assume the observations are a random sample from a normal distribution with known distribution variance 0.041. Compute a 95% confidence interval and a 99% confidence interval for the mean of the observation.
 - (b) Assume now the observations are a random sample from a normal distribution with unknown distribution variance. Compute a 95% confidence interval for the mean of the observation.
- 4. (6 points) Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S = 1, 2, 3, 4 and transition matrix

Assume the distribution over states at t = 0 is (0.1, 0.3, 0, 0.6).

- (a) Find the distribution over states at t = 2.
- (b) What is the probability of the event $\{X_0 = 1, X_1 = 2, X_2 = 3\}$?
- (c) Is the chain ergodic? Is it absorbing?
- (d) Conditionally on $X_1 = 1$, what is the probability that $X_0 = 2$?
- 5. (4 points) Assume x_1, \ldots, x_n is a random sample from a Poisson random variable with parameter λ . Derive the formula for the Maximum Likelihood estimator for λ given the sample. Is the ML estimator biased or unbiased in this case?
- 6. (4 points) Define a random variable *X* with the following probability density function on the interval [0, 1]:

$$f(x) = \begin{cases} 0 \le x \le \theta & ax/\theta \\ \theta \le x \le 1 & a(1-x)/(1-\theta) \end{cases}$$

where θ is some parameter and *a* is a constant.

- (a) Compute *a*.
- (b) Find the expectation of X as a function of the parameter θ .
- 7. (3 points) Assume a random variable X has a uniform distribution on the interval $[0, \pi]$. Compute $\mathbf{E}(\cos X)$, $\mathbf{Var}(\cos X)$, $\mathbf{E}(\sin X)$, and $\mathbf{Var}(\sin X)$.
- 8. (4 points) A random variable *X* with the *standard Cauchy distribution* is defined with the density function

$$f(x) = \frac{1}{\pi(1+x^2)}$$

- (a) Prove that the expectation of *X* does not exist.
- (b) For any $n \ge 1$, assume X_1, \ldots, X_n is a random sample from the standard Cauchy distribution and define define $Y_n = (X_1 + X_2 + \cdots + X_n)/n$. The figure below shows four histograms of samples of size 1000 of Y_n , for values n = 10, n = 100, n = 1000 and n = 10000. Describe what the histograms would have looked like if we instead of the standard Cauchy distribution had started with a different distribution, say a Beta distribution or a uniform distribution. Why do the histograms look different when we use the Cauchy distribution?