Lösningar till tentamen i Matematisk statistik och diskret matematik D2 (MVE055/MSG810).

Den 19 oktober 2010. These are sketches of the solutions.

1. Lösning:
a) $P(A \cap B)=P(A) P(B)$, the knowledge about one event does not carry any information about the other
b) $P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.6+0.5-0.6 \cdot 0.5=0.8$ $P\left(A \cap B^{C}\right)=P(A)-P(A \cap B)=0.6-0.3=0.3$
c) $P(G \mid H):=P(G \cap H) / P(H)$. It A and B independent then $P(A \mid B)=P(A)$.
2. Lösning:
a) 0.1
b) 0.15
c) $P\left(X_{1}+X_{2} \in\{2,4\}\right)=P(\{1+1\})+P(\{1+3\})+P(\{3+1\})+P(\{2+2\})=0.3225$
3. Lösning:
a) $F_{X}(x)=P(X \leq x), f_{X}=\frac{\mathrm{d}}{\mathrm{dx}} F_{X}(x)$
b) $F_{X}(x)=\int_{x_{0}}^{x} C y^{-\alpha} \mathrm{dy}=C \frac{1}{1-\alpha}\left(x^{1-\alpha}-x_{0}^{1-\alpha}\right)$, we need to choose some lower bound as there is the problem of integrability at 0
4. Lösning:
a) $f_{X}(x)=\lambda e^{-\lambda x} x \geq 0 \mathbf{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} \mathrm{x}=\frac{1}{\lambda}$.
b) $3 \cdot 1-7 \cdot 1=-4$
c) $9 \cdot 1+49 \cdot 1=58$, we use that if X and Y independent then $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$ and $\operatorname{Var}[a X]=a^{2} \operatorname{Var}[X] . \operatorname{Cov}[X, Y]=0$
d) If the covariance is non-zero then they are dependent. A zero covariance does not allow us to draw conclusions except in the case of a normal distribution where zero covariance implies independence.
5. Lösning:
a) $\hat{\theta}$ is unbiased if $\mathbf{E}[\hat{\theta}]=\theta, \bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \mathbf{E}[\bar{X}]=\frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=\mu$, therefore is unbiased, $\bar{X} \sim \mathcal{N}(\mu, 0.5), \bar{X}$ is normal as linear combination of normals then we need to calculate its mean and variance using the properties of the mean and variance of a linear combination of independent random variables
b) Motivate $P\left(-z_{\alpha / 2} \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z_{a / 2}\right)=1-\alpha$ and transform it to $\mu \in \bar{X} \pm z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}$. If we would have a large number of independent samples of size n then about ($1-\alpha$) 100% of them would generate confidence intervals which contain the true value of μ.
c) 42.88312 ± 0.98 not surprised as 42.2 is inside confidence interval
6. Lösning:

You need to calculate S_{j}^{2} as $S_{j}^{2}=\frac{1}{n_{j}-1}\left(\sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n_{j}}\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right)$ (however if someone uses the maximum likelihood estimator $S_{j}^{2}=\overline{x_{j}^{2}}-\left(\overline{x_{j}}\right)^{2}$ this will be acceptable with 0.1 points deducted if no comment is made on this)
a) $\operatorname{Var}\left[X_{1}\right]=211.0161, \operatorname{Var}\left[X_{2}\right]=140.3557$,
$10.44638 \pm 2.676 \sqrt{180.5352 \cdot(1 / 30+1 / 23)}=10.44638 \pm 9.965075$. The second time period appears to give the faster access time as 0 is below the confidence interval.
b) We would need to observe 0 inside the confidence interval.
7. Lösning:
a) $62 / 200=0.31,76 / 190=0.40 .31-0.4=-0.09$, the estimator is unbiased as $\mathbf{E}\left[\frac{x}{n}\right]=\frac{1}{n} \mathbf{E}[x]=n p / n=p$
b) $p n>5$ or $(1-p) n>5$ the probability of success cannot be too small and the sample needs to be at least 30 so we can use the normal approximation and plug-in \hat{p} for p as then $p(1-p) \approx \hat{p}(1-\hat{p})$ in the confidence interval formula.
c) -0.09 ± 0.07969, yes I would be surprised as 0 is not in the confidence interval
8. Lösning:

a)

$$
\mathbf{P}=\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 & 0 \\
0.25 & 0 & 0.75 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0.75 & 0 & 0.25 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

b) An absorbing state is a state for which the probability of remaining in it is 1 , a Markov chain is absorbing if it possess an absorbing state. If there is a one on \mathbf{P} 's diagonal then the Markov chain is absorbing.
c)

$$
\mathbf{P}^{2}=\left(\begin{array}{ccccc}
0.25 & 0 & 0.75 & 0 & 0 \\
0 & 0.625 & 0 & 0.375 & 0 \\
0.125 & 0 & 0.75 & 0 & 0.125 \\
0 & 0.375 & 0 & 0.625 & 0 \\
0 & 0 & 0.75 & 0 & 0.25
\end{array}\right)
$$

\mathbf{P}^{n} is the transition matrix of the change of the state of the Markov chain over n steps.
9. Lösning:
a) $\binom{n}{k} p^{k}(1-p)^{n-k}, k=0, \ldots, n$, the binomial distribution is the sum of n independent trails of a Bernoulli distribution with parameter p
b) mean is $n p$, variance $n p(1-p)$
c) $\mathbf{E}[X]=\mu$ for every $\epsilon>0 P(|X-\mu| \geq \epsilon) \leq \frac{\operatorname{Var}[X]}{\epsilon^{2}} \mathbf{E}\left[X^{2}\right]<\infty$, proof see lecture.
d) multiply by n, use Chebyshev with mean and variance of binomial distribution. We use $\frac{S_{n}}{n}$ as an estimator for p, this gives us a rough bound on the probability that we will err in the estimation by at least ϵ

