Time complexity of merge sort

Krzysztof Bartoszek

October 7, 2010

```
Algorithm 1 merge_sort(list)
    if length(list) \(==1\) then
        return list
    else
        \(A=\) merge_sort(first half of list)
        \(B=\) merge_sort(second half of list)
        \(C=\operatorname{merge}(A, B)\) return \(C\)
    end if
```

We will analyze the time complexity of the above algorithm. Define by a_{n} as the time needed to sort a list of 2^{n} elements. The time complexity of the algorithm can be described by the following recursion,

$$
\begin{aligned}
a_{n} & =2 a_{n-1}+c_{1} 2^{n} \\
a_{0} & =c_{0} .
\end{aligned}
$$

We need to solve this recursion to find an explicit dependence of the time on n and we will do this via its generating function $A(x)$.

$$
\begin{gathered}
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=c_{0}+\sum_{n=1}^{\infty}\left(2 a_{n-1}+c_{1} 2^{n}\right) x^{n}=c_{0}+\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}+\sum_{n=1} c_{1}(2 x)^{n}= \\
=c_{0}+2 x \sum_{n=1}^{\infty} a_{n-1} x^{n-1}+c_{1} \sum_{n=1}^{\infty}(2 x)^{n}=c_{0}+2 x \sum_{n=0}^{\infty} a_{n} x^{n}+c_{1} 2 x \frac{1}{1-2 x}=c_{0}+2 x A(x)+\frac{2 c_{1} x}{1-2 x},
\end{gathered}
$$

provided $|x|<0.5$. This gives us that

$$
\begin{aligned}
(1-2 x) A(x) & =c_{0}+\frac{2 c_{1} x}{1-2 x} \\
A(x) & =\frac{c_{0}}{1-2 x}+\frac{2 c_{1} x}{(1-2 x)^{2}}= \\
& =\frac{\left.c_{0}-c\right) 1}{1-2 x}+\frac{c_{1}}{(1-2 x)^{2}} .
\end{aligned}
$$

Using the formulas given in the lecture for the generating functions of different sequences,

$$
\begin{aligned}
& A(x)=\frac{\left.c_{0}-c\right) 1}{1-2 x}+\frac{c_{1}}{(1-2 x)^{2}}=\left(c_{0}-c_{1}\right) \sum_{n=0}^{\infty}(2 x)^{n}+c_{1} \sum_{n=0}^{\infty}\binom{n+1}{1}(2 x)^{n}= \\
& =\left(c_{0}-c_{1}\right) \sum_{n=0}^{\infty}(2 x)^{n}+c_{1} \sum_{n=0}^{\infty}(n+1)(2 x)^{n}=\sum_{n=0}^{\infty} 2^{n}\left(c_{0}+c_{1} n\right) x^{n} .
\end{aligned}
$$

We therefore have that the formula for the sequence is,

$$
a_{n}=\left(c_{0}+c_{1} n\right) 2^{n} \approx c_{1} n 2^{n}=O\left(n 2^{n}\right)
$$

Now let t_{k} be the time needed to sort $k=2^{n}$ elements,

$$
t_{k}=a_{n}=a_{\log _{2} k}=c_{1} k \log k=O(k \log k) .
$$

Now for a general $k>8$ (we don't want to worry about small $k \mathrm{~s}$ which would cause problems in the argumentation below), let $n_{k}:=\min \left\{n>3: 2^{n-1} \leq k \leq 2^{n}\right\}$, i.e. $2^{n_{k}-1} \leq k \leq 2^{n_{k}}$. We can bound the time complexity to sort a list of k elements by the time needed to sort $2^{n_{k}}$ elements which is $O\left(2^{n_{k}} \log 2^{n_{k}}\right)$. Now we bound the time for k from the bottom and above,

$$
\begin{gathered}
2^{n_{k}-1} \log 2^{n_{k}-1}<k \log k<2^{n_{k}} \log 2^{n_{k}} \\
2^{n_{k}-1} \log 2^{2^{n_{k}}-1}<k \log k<2^{n_{k}} \log 2^{n_{k}}<2 \cdot 2^{n_{k}-1} \log 2^{n_{k}-1^{2}} \\
2^{n_{k}-1} \log 2^{n_{k}-1}<k \log k<2 \cdot 2^{n_{k}-1} 2 \cdot \log 2^{n_{k}-1} \\
2^{n_{k}-1} \log 2^{n_{k}-1}<k \log k<4 \cdot 2^{n_{k}-1} \cdot \log 2^{n_{k}-1}<4 k \log k \in O(k \log k),
\end{gathered}
$$

and as we are interested in getting complexity in terms of $O(\cdot)$ we get that the complexity of the merge sort algorithm is $O(k \log k)$ (we assumed $k>8$ but we don't worry about small k).

