Marco Longfils and Petter Mostad
Applied Mathematics and Statistics
Chalmers and GU

## MVE055 / MVE051 / MSG810 Matematisk statistik och diskret matematik

Exam 29 August 2018, 14.00-18:00
Allowed aids: Chalmers-approved calculator and one (two-sided) A4 sheet of paper with your own notes. Total number of points: 30 . To pass, at least 12 points are needed. Note: All answers should be motivated.

1. (5 points) Consider a discrete random variable $X$ such that $P(X=k)=\frac{1}{4}$, for $k \in$ $\{-3,-1,1,3\}$.
(a) Compute the covariance between the two random variable $X$ and $Y=X^{2}$.
(b) Based on your previous findings, are $X$ and $Y$ independent?
2. (5 points) State and prove Chebychev's inequality.
3. ( 5 points) Let $X$ be a random variable taking values in the natural numbers $\{1,2,3, \ldots\}$. Suppose that $X$ satisfies the following property

$$
P(X \geq x+1 \mid X \geq x)=1-p, \text { for all } x=1,2,3, \ldots
$$

for some $p \in[0,1]$.
(a) Show that $\frac{P(X \geq x+1)}{P(X \geq x)}=1-p$ for all $x=1,2,3, \ldots$.
(b) Use the previous point and recursion to show that, for all $x=1,2,3, \ldots, P(X \geq x+1)=$ $(1-p)^{x}$.
(c) Find $P(X=x)$ for all $x=1,2,3, \ldots$ What is the distribution of $X$ ?
4. ( 5 points) Let $U$ be a uniformly distributed random variable on the interval $[a, b]$. Assume $t>0$ and $s$ are two constants. Which of the following statements are true? (Motivate your answer for each statement)
(a) The random variable $V=s+t U$ is uniformly distributed in $[s+a t, s+t b]$.
(b) The random variable $V=s+t U$ is uniformly distributed in $[(s+a) t,(s+b) t]$.
(c) The expected value of $V=s+t U$ is $s+t\left(\frac{b-a}{2}\right)$.
5. ( 5 points) Let $X_{1}, \ldots, X_{n}$ be independent and identically distributed random variables with normal distribution $N\left(\mu, \sigma^{2}\right)$. Assume that the variance $\sigma^{2}$ is known. Denote by $I_{\alpha}$ the $100(1-\alpha) \%$ standard confidence interval for the mean $\mu$.
(a) What happens to the width of the confidence interval when $\alpha$ increases?
(b) What happens to the width of the confidence interval when $\sigma^{2}$ decreases?
(c) What happens to the width of the confidence interval when the sample size $n$ doubles?
6. ( 5 points) A gambler can play a game of chance in which at every play he can win 1 kr with probability 0.25 or lose 1 kr with probability 0.75 . The player starts with a capital of $k=2 \mathrm{kr}$ and he stops playing whenever he has a total of 3 kr . Let $X_{n}$ denote the capital of the gambler after $n$ games, and $X_{0}=2$.
(a) Write down the transition matrix $P$ of the Markov chain $\left\{X_{n}\right\}_{n \in \mathbb{N}}$.
(b) Find the probability that the gambler will go bankrupt.

