MVE055 2018 Lecture 4

Marco Longfils
Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg

Wednesday $12^{\text {th }}$ September, 2018

Joint distribution

- Up to now: univariate distribution \rightarrow a single random value.
- Typically we need to consider multivariate distribution, used to model many uncertain values. In this way, we can take into account the dependencies between these quantities.
- We will now focus on bivariate distribution, but generalization to more variables is straightforward.

Joint density function/1

Definition (discrete joint density)

Let X, Y be two discrete random variables. The vector (X, Y) is a bivariate discrete random variable and a function $f_{X Y}$ which satisfies

$$
f_{X Y}(x, y)=\operatorname{Pr}[X=x, Y=y], \text { for } \operatorname{all}(x, y) \in \mathbb{R}^{2}
$$

is called joint density for the vector (X, Y).

Theorem

A function $f(x, y)$ is a discrete joint density if and only if

- $f(x, y) \geq 0$
- $\sum_{\text {all }(x, y)} f(x, y)=1$

Definition (discrete marginal density)

Let (X, Y) be a bivariate discrete random vector with joint density $f_{X Y}$. The marginal density f_{X} for X is given by

$$
f_{X}(x)=\sum_{\text {all } y} f_{X Y}(x, y)
$$

and similarly the marginal density for Y is

$$
f_{Y}(y)=\sum_{\text {all } x} f_{X Y}(x, y)
$$

Joint density function/2

Definition (continuous joint density)

Let X, Y be two continuous random variables. The vector (X, Y) is a bivariate continuous random variable and a function $f_{X Y}$ which satisfies

- $f(x, y) \geq 0$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x=1$
- $\operatorname{Pr}[X \in[a, b], Y \in[c, d]]=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$, for all $a, b, c, d \in \mathbb{R}$ is called joint density for the vector (X, Y).
Furthermore, the marginal densities f_{X} and f_{Y} for, respectively, X and Y are given by

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d x
\end{aligned}
$$

Independence of random variable

- Recall: two events A, B are said to be independent if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.

Definition (independence for random variables)

Two random variables X and Y with joint density $f_{X Y}$ and marginal densities f_{X}, f_{Y} are independent if and only if

$$
f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

for all x and y

Expected value

- In general, the expected value of a function of $H(X, Y)$ is given by

$$
\mathbb{E}[H(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(x, y) f_{X Y}(x, y) d x d y
$$

if X, Y are discrete and by

$$
\mathbb{E}[H(X, Y)]=\sum_{\text {all }(x, y)} H(x, y) f_{X Y}(x, y)
$$

- Same properties as in the discrete case.
- If X, Y are independent then

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]
$$

(the viceversa is not true in general).

Covariance

Definition (Covariance)

Let X and Y be two random variables. The covariance between X and Y is defined as

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

It holds that

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y] .
$$

- If X, Y are independent $\rightarrow \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y] \rightarrow \operatorname{Cov}(X, Y)=0$ (the viceversa is not true in general).
- $\operatorname{Cov}(X, Y)$ gives an indication of association between X and Y
- $\operatorname{Cov}(X, Y)$ can be any real value \rightarrow no information about the strength of the dependence.

Correlation

Definition (Correlation)

Let X and Y be two random variables. The correlation between X and Y is defined as

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}} .
$$

- $\rho_{X Y}$ measures linear dependence between X and Y.
- $\rho_{X Y}$ can be any real value between -1 and 1 .
- $\left|\rho_{X Y}\right|=1$ if and only if $Y=\beta_{0}+\beta_{1} X$ for some β_{0} and $\beta_{1} \neq 0$.

US spending on science, space, and technology
correlates with
Suicides by hanging, strangulation and suffocation

Conditional density

- Recall: given two events A, B (if $\operatorname{Pr}[B]>0)$ we have $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.

Definition (conditional density)

Given two random variables X and Y with joint density $f_{X Y}$ and marginal densities f_{X}, f_{Y} we define the conditional density for X given $Y=y$ as

$$
f_{X \mid y}=\frac{f_{X Y}(x, y)}{f_{Y}(y)}, \text { if } f_{Y}(y)>0
$$

Transformation of variables

Theorem

Let (X, Y) be a continuous bivariate vector with density $f_{X Y}$. Moreover, let (U, V) be a continuous bivariate vector with density $f_{U V}$ and

$$
(X, Y)=\left(h_{1}(U, V), h_{2}(U, V)\right)
$$

where h_{1} and h_{2} define a one-to-one transformation and have continuous partial derivatives. Then

$$
f_{U V}(u, v)=f_{X Y}\left(h_{1}(u, v), h_{2}(u, v)\right)|J|
$$

where J is the given by

$$
J=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]
$$

