MVE055 2018 Lecture 12

Marco Longfils
Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg

Wednesday $10^{\text {th }}$ October, 2018

Chebychev's inequality

Also know as Chebysheff, Chebychov, Chebyshov, Tchebychev,Tchebycheff, Tschebyschev, Tschebyschef, Tschebyscheff...

Proposition (Chebychev's inequality)

Let X be a random variable such that $\mathbb{E}[X]=\mu, \operatorname{Var}(X)=\sigma^{2}$. If $0<\sigma^{2}<\infty$ then for any $k>0$ it holds

$$
P[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

or equivalently for any $a>0$

$$
P[|X-\mu| \geq a] \leq \frac{\sigma^{2}}{a^{2}}
$$

Law of Large Numbers

Theorem ((Weak) Law of Large Numbers)

Let X_{1}, \ldots, X_{n} be independent and identically distributed (i.i.d) random variables with mean $\mu<\infty$ and variance $0<\sigma^{2}<\infty$.
Denote by $S_{n}=X_{1}, \ldots, X_{n}$ the sum of the n random variables. Then for any $\epsilon>0$

$$
P\left(\left|\frac{S_{n}}{n}-\mu\right| \geq \epsilon\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

- Called "weak" to distinguish it from the "strong" law of large numbers.
- It is NOT valid if the variance is not finite!

Monte Carlo Method

Problem: how to approximate the area shaded in blue in the figure (which is $\frac{\pi}{4}=0.7854$:

Monte Carlo Method

Idea: Generate points X_{1}, \ldots, X_{n} uniformly in the square $[0,1] \times[0,1]$ for some n and count

Monte Carlo Method

$n=1000$ points, estimated area $=0.7980$

Monte Carlo Method

$$
n=10000 \text { points, estimated area }=0.7909
$$

Monte Carlo Method

Assume we want to approximate the area of a set B.

- Generate n independent and uniformly distributed points X_{1}, \ldots, X_{n} in a set A, such that $B \subset A$.
- Count how many of points X_{1}, \ldots, X_{n} falls in B. That is, define $Y_{i}, i=1, \ldots, n$ by

$$
Y_{i}=\left\{\begin{array}{lc}
1, & \text { if } X_{i} \in B \\
0, & \text { otherwise }
\end{array}\right.
$$

- It follows that $P\left(Y_{i}=1\right)=P\left(X_{i} \in B\right)=\frac{\operatorname{Area}(B)}{\operatorname{Area}(A)}$, and $\mathbb{E}\left[Y_{i}\right]=P\left(Y_{i}=1\right)=\frac{\operatorname{Area}(B)}{\operatorname{Area}(A)}$.

Monte Carlo Method

- Define $S_{n}=Y_{1}+\cdots+Y_{n}$. The law of large numbers applied to the Y_{i} ensure

$$
P\left(\left|\frac{S_{n}}{n}-\mu\right| \geq \epsilon\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

where $\mu=\mathbb{E}\left[Y_{i}\right]=\frac{\operatorname{Area}(B)}{\operatorname{Area}(A)}$

- $\frac{S_{n}}{n}$ should be approximately $\frac{\operatorname{Area}(B)}{\operatorname{Area}(A)}$.
- Approximate $\operatorname{Area}(B)=\operatorname{Area}(A) \frac{S_{n}}{n}$.

