MVE055 2017 Lecture 15

Marco Longfils

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg

Monday $16^{\text {th }}$ October, 2017

Parametric vs. Nonparametric

- The data have to be numeric:
- We need/can make assumptions on the underlying distribution of the data (e.g. normality).
- They often have higher statistical power than corresponding nonparametric test. That is, When a significant effect exists, parametric test are more likely to detect this effects.
- If the sample size is large "enough", they can still perform well even in the case where assumptions are not met (e.g. T test with equal variances, nonnormal data)

Nonparametric test

- The data can be numeric, ordinal, or nominal.
- We do not specify the underlying distribution of the data ("distribution-free").
- Usable even with small samples;
- T-test (parametric) is testing equality of means, where sometimes the mean might not be the "best" measure of location.

Wilcoxon Rank-Sum test

- Let X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n} be two independent random samples of, respectively, X and Y.
- We want to test if X and Y have the same distribution, i.e.
$H_{0}: \mathrm{X}$ and Y have the same distribution
$H_{1}: \mathrm{X}$ and Y do not have the same distribution
- Under some assumptions, Wilcoxon test can be interpreted as a test on medians, i.e. denote by M_{X}, M_{Y} the medians

$$
\begin{aligned}
& H_{0}: M_{X}=M_{Y} \\
& H_{1}: M_{X} \neq M_{Y}
\end{aligned}
$$

- Similarly, one can consider one-sided tests.

An example

- Suppose we have the following data regarding the height of individuals (in centimeters):

Male	Female
180	175
193	168
178	163
188	165
185	173
170	
183	

- We would like to investigate if the distribution of the height is the same in this two groups, but (for one of the reason specified above) we cannot use a T-test.

An example

- Sort the data in ascending order: (Men,Women)
$\begin{array}{llllllllllll}163 & 165 & 168 & 170 & 173 & 175 & 178 & 180 & 183 & 185 & 188 & 193\end{array}$

An example

- Sort the data in ascending order: (Men,Women)

$$
\begin{array}{llllllllllll}
163 & 165 & 168 & 170 & 173 & 175 & 178 & 180 & 183 & 185 & 188 & 193
\end{array}
$$

- Rank the values starting from 1 for the lowest value:

Height	163	165	168	170	173	175	178	180	183	185	188	193
Rank	1	2	3	4	5	6	7	8	9	10	11	12

An example

- Sort the data in ascending order: (Men,Women)

$$
\begin{array}{llllllllllll}
163 & 165 & 168 & 170 & 173 & 175 & 178 & 180 & 183 & 185 & 188 & 193
\end{array}
$$

- Rank the values starting from 1 for the lowest value:

Height	163	165	168	170	173	175	178	180	183	185	188	193
Rank	1	2	3	4	5	6	7	8	9	10	11	12

- Define W_{5} to be the sum of the ranks for women, i.e.

$$
W_{5}=1+2+3+5+6=17
$$

- We look in the Statistical table for the critical values for Wilcoxon Rank Sum test with $m=5$ and $n=7=m+2$

An example

- Sort the data in ascending order: (Men,Women)

$$
\begin{array}{llllllllllll}
163 & 165 & 168 & 170 & 173 & 175 & 178 & 180 & 183 & 185 & 188 & 193
\end{array}
$$

- Rank the values starting from 1 for the lowest value:

Height	163	165	168	170	173	175	178	180	183	185	188	193
Rank	1	2	3	4	5	6	7	8	9	10	11	12

- Define W_{5} to be the sum of the ranks for women, i.e.

$$
W_{5}=1+2+3+5+6=17
$$

- We look in the Statistical table for the critical values for Wilcoxon Rank Sum test with $m=5$ and $n=7=m+2$
- We reject H_{0} at a 5% significance level if $W_{5}<20$ or $W_{m}>45$. We conclude: men are taller than women.

Wilcoxon Rank-Sum test

- Let X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n} be two independent random samples of, respectively, X and Y. Assume $m \leq n$.
- Sort the values of $X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}$ in ascending order and rank them starting from 1 up to $m+n$.
- If there are ties, all the tied values get the average rank of the tied value, for example if we have three tied observation with height 180 and ranks $i, i+1, i+2$ then each of those observation get the rank

$$
\frac{i+(i+1)+(i+2)}{3}
$$

- Compute W_{m}, the sum of the ranks of the X 's;
- Look at the statistical tables (Table X in (MA)) for the critical values;

Wilcoxon Signed Rank test

- Is a nonparametric test for testing equality of distribution of two DEPENDENT samples (null and alternative hypothesis as before);
- Example: we would like to test the effect of a new drug on blood pressure. We measure the (systolic) blood pressure of 7 patients before and after they take the drug.

Before	After
120	115
113	108
118	113
128	125
115	123
110	112
123	122

- We can see that the measurements of the blood pressure are naturally paired as "before" ($X \mathrm{~s}$) and "after" ($Y \mathrm{~s}$) $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{7}, Y_{7}\right)$;

Wilcoxon Signed Rank test

- We compute the pair differences $X_{i}-Y_{i}, i=1, \ldots, 7$.

X	Y	$\|\mathrm{X}-\mathrm{Y}\|$	$\operatorname{sign}(\mathrm{X}-\mathrm{Y})$	rank	signed rank
120	115	5	+	5	+5
113	108	5	+	5	+5
118	113	5	+	5	+5
128	125	3	+	3	+3
115	123	8	-	7	-7
110	112	2	-	2	-2
123	122	1	+	1	+1

- Define

$$
W_{+}=\sum_{\text {all positive ranks } R_{i}} R_{i}, \quad\left|W_{-}\right|=\sum_{\text {all negative ranks } R_{i}}\left|R_{i}\right|
$$

- zero differences are assigned the sign that is "least leading" to the rejection of the null hypothesis;

Wilcoxon Signed Rank test

- In our example

$$
W_{+}=19, \quad\left|W_{-}\right|=9
$$

- For a two sided test, the statistic to be used is $\min \left\{W_{+},\left|W_{-}\right|\right\}$; for right tailed test (" $\mathrm{X}>\mathrm{Y}$ ") we use $\left|W_{-}\right|$, for left tailed test ("X<Y") W_{+};
- In any case we reject the null hypothesis if the test statistic is smaller than the critical value found in Table VIII of (MA);
- We perform the two tailed test at the level $\alpha=0.05$. The critical point is 2 and $\min \left\{W_{+},\left|W_{-}\right|\right\}=9>2$. Thus we do not reject the null hypothesis.

Wilcoxon Signed Rank-Sum test

- Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} be two dependent (i.e. paired) random samples of, respectively, X and Y.
- Sort the absolute values of $X_{1}-Y_{1}, \ldots, X_{n}-Y_{n}$ in ascending order and rank them starting from 1 up to n.
- If there are ties, all the tied values get the average rank of the tied value;
- Compute the signed ranks by multiplying the sign of the difference $X_{i}-Y_{i}$ by its rank;
- Compute $\left\{W_{+},\left|W_{-}\right|\right\}$
- Look at the statistical tables (Table VIII in (MA)) for the critical value;
- Reject H_{0} if the test statistic is smaller than the critical value

