MVE055 2018 Lecture 2

Marco Longfils

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg

Wednesday $5^{\text {th }}$ September, 2018

Random variables

- A random variable is a (measurable) function on the sample space;
- There are three types of random variables:
- categorical: if they assume non-numerical values, e.g. Blood type;
- discrete: if the possible values it can assume are at most finite or countably many (example: number of earthquakes in a year);
- continuous: it can assume values in an interval or the entire real line (example: height, time)
- Notation: X typically denotes a random variable and x a realisation (observed value) of the random variable.

What is a random variable?

Discrete random variables

Definition

Let X be a discrete random variable. The function

$$
f(x)=\operatorname{Pr}[X=x], x \in \mathbb{R}
$$

is called the density function of X. The cumulative distribution function of X, denoted by F, is defined as

$$
F(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f(y), x \in \mathbb{R}
$$

Theorem

A function f is a density function of some discrete random variable if and only if

- $f(x) \geq 0$ for all x
- $\sum_{\text {all } x} f(x)=1$

Expected value, variance and standard deviation

Definition (Expected value)

Let X be a discrete random variable with density function f. We define the expected value of X (denoted as $\mathbb{E}[X]$) as

$$
\mathbb{E}[X]=\sum_{\text {all } x} x f(x)
$$

provided that $\sum_{\text {all }}|x| f(x)$ is finite.
In general, if $H(X)$ is a random variable, the expected value of $H(X)$ is given by

$$
\mathbb{E}[H(X)]=\sum_{\text {all } x} H(x) f(x)
$$

provided that $\sum_{\text {all } x}|H(x)| f(x)$ is finite.

Figure: Top: Height of 60 males; Bottom: Height of 60 females.

Properties of the expected value

- For a constant a, b, c and random variables X, Y

$$
\begin{gathered}
\mathbb{E}[c]=c \\
\mathbb{E}[c X]=c \mathbb{E}[X] \\
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \\
\rightarrow \mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c
\end{gathered}
$$

- Notation: we typically use the letter μ to denote the expected value.

Variance and standard deviation

Definition (Variance, standard deviation)

Let X be a random variable with expected value μ. The variance of X (denoted as $\operatorname{Var}[X]$ or σ^{2}) is

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right] .
$$

The standard deviation of X (denoted by σ) is given by

$$
\operatorname{Sd}[X]=\sqrt{\operatorname{Var}[X]}
$$

Figure: Top: Height of 60 Swedes; Bottom: Height of 60 Norwegians.

Properties of the variance and standard deviation

- It holds

$$
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

- For a constant c and a random variable X

$$
\begin{gathered}
\operatorname{Var}[c]=0 \\
\operatorname{Var}[c X]=c^{2} \operatorname{Var}[X]
\end{gathered}
$$

$$
\operatorname{Sd}[c X]=c \operatorname{Sd}[X]
$$

Bernoulli random variable

- A trial has two possible outcomes: success (1) and failure (0) with density function

$$
f(x)= \begin{cases}p & \text { if } x=1 \\ 1-p & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

- $\mathbb{E}[X]=p$
- $\operatorname{Var}[X]=p(1-p)$
- Example: a coin toss where we consider success if the outcome is "H"

Important series

For $|s|<1$ it holds

$$
\sum_{k=0}^{\infty} s^{k}=\frac{1}{1-s}
$$

$$
\sum_{k=0}^{n} s^{k}=\frac{1-s^{n+1}}{1-s}
$$

and

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Geometric random variable

- Possible values $0,1,2, \ldots$ with density function

$$
f(x)= \begin{cases}p(1-p)^{x-1} & \text { if } x \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

- It can be associated to a sequence of independent experiments, each one with probability p of "success". The geometric random variable models the trial in which we obtain the first "success" (example: toss a coin infinite times and check the first time where we obtain "head");
- $\mathbb{E}[X]=\frac{1}{p}$
- $\operatorname{Var}[X]=\frac{1-p}{p^{2}}$

Binomial random variable

- A trial has two possible outcomes: success (1) and failure (0) with probability p of success. The random variable X which counts the number of successes in n independent trial is called Binomial and has the following density function

$$
f(x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} & \text { if } x=0,1,2, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

- $\mathbb{E}[X]=n p$
- $\operatorname{Var}[X]=n p(1-p)$
- Exercise: Show that f above is a density function, compute expected value and variance (Hint: use the series in the previous slide).

Binomial density function

Figure: Binomial density function for different values of the parameters n and p.

Moment generating function

The moments of a random variables are $\mathbb{E}[X], \mathbb{E}\left[X^{2}\right], \mathbb{E}\left[X^{3}\right], \ldots$

Definition (Moment generating function)

Let X be a random variable with density f. The moment generating function for X is given by

$$
m_{X}(t)=\mathbb{E}\left[e^{t X}\right]
$$

provided the right hand side is finite for all t in some open interval.

Moment generating function

Theorem

Let $m_{X}(t)$ be the moment generating function of X. Then

$$
\left.\frac{d^{k} m_{X}(t)}{d t^{k}}\right|_{t=0}=\mathbb{E}\left[X^{k}\right]
$$

We will use the moment generating function later in the course.

