Marco Longfils and Petter Mostad
Applied Mathematics and Statistics
Chalmers and GU

MVE055 / MVE051 / MSG810 Matematisk statistik och diskret matematik

Exam 29 August 2018, 14:00-18:00
Allowed aids: Chalmers-approved calculator and one (two-sided) A4 sheet of paper with your own notes. Total number of points: 30 . To pass, at least 12 points are needed. Note: All answers should be motivated.

Solutions

1. (a) Since $P(X=k)=\frac{1}{4}, k \in\{-3,-1,1,3\}$ then $P(Y=r)=\frac{1}{2}, r \in\{1,9\}$. We can compute $\mathbb{E}[X]=0$ and similarly $\mathbb{E}\left[X^{3}\right]=0$ since X is symmetric around 0 . We observe now that, since $Y=X^{2}, X Y=X X^{2}=X^{3}$, implying that $\mathbb{E}[X Y]=\mathbb{E}\left[X^{3}\right]=0$. Thus,

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=\mathbb{E}\left[X^{3}\right]-0=0 .
$$

Hence, X and Y are uncorrelated.
(b) X, Y are not independent since, for example,

$$
P(X=-1, Y=9)=0 \neq P(X=-1) P(Y=9) .
$$

2. Chebychev's inequality: Let X be a random variable such that $\mathbb{E}=\mu, \operatorname{Var}(X)=\sigma^{2}$. If $0<\sigma^{2}<\infty$, then for any $a>0$ it holds

$$
P(|X-\mu| \geq a) \leq \frac{\sigma^{2}}{a^{2}}
$$

Proof: Define $Y=|X-\mu|$. For any $a>0$ we define

$$
Z= \begin{cases}a^{2} & Y \geq a \\ 0 & \text { otherwise }\end{cases}
$$

By definition $Z \leq Y^{2}$, which implies

$$
\begin{equation*}
\mathbb{E}[Z] \leq \mathbb{E}\left[Y^{2}\right] . \tag{1}
\end{equation*}
$$

Moreover, we observe

$$
\mathbb{E}[Z]=a^{2} P(Y \geq a)=a^{2} P(|X-\mu| \geq a)
$$

and

$$
\mathbb{E}\left[Y^{2}\right]=\mathbb{E}\left[|X-\mu|^{2}\right]=\operatorname{Var}(X)=\sigma^{2}
$$

Replacing the above equations into Equation 1 we obtain

$$
a^{2} P(|X-\mu| \geq a) \leq \operatorname{Var}(X)
$$

which can be rewritten as

$$
P(|X-\mu| \geq a) \leq \frac{\operatorname{Var}(X)}{a^{2}}=\frac{\sigma^{2}}{a^{2}}
$$

3. (a) Given that $P(X \geq x+1 \mid X \geq x)=1-p$, for all $x=1,2,3, \ldots$ we have by definition of conditional probability, for all $x=1,2,3, \ldots$,

$$
1-p=P(X \geq x+1 \mid X \geq x)=\frac{P(X \geq x+1, X \geq x)}{P(X \geq x)}=\frac{P(X \geq x+1)}{P(X \geq x)} .
$$

(b) Using the previous point, for all $x=1,2,3, \ldots$,
$P(X \geq x+1)=(1-p) P(X \geq x)=(1-p)^{2} P(X \geq x-1)=\ldots=(1-p)^{x} P(X \geq 1)=(1-p)^{x}$,
where $P(X \geq 1)=1$ since X is always greater or equal to 1 .
(c)
$P(X=x)=P(X \geq x)-P(X \geq x+1)=(1-p)^{x}-(1-p)^{x+1}=(1-p)^{x}(1-(1-p))=p(1-p)^{x}$.
X has a Geometric distribution with parameter p.
4. (a) TRUE: the minimum value U can assume is a. Thus the minimum value V can assume is $s+a t$. Similarly, the maximum value of V is $s+b t$. For any value $v \in$ $[s+a t, s+b t]$ the density of V is

$$
f_{V}(v)=f_{U}\left(\frac{v-s}{t}\right)\left|\frac{1}{t}\right|=\frac{1}{t(b-a)}
$$

which is the density of a uniform random variable on the interval $[s+a t, s+b t]$.
(b) FALSE: see previous motivation.
(c) FALSE: The expected value of U is $\mathbb{E}[U]=\frac{b+a}{2}$. Using the linearity of expectation, we obtain

$$
\mathbb{E}[V]=\mathbb{E}[s+t U]=s+t+\mathbb{E}[U]=s+t \frac{b+a}{2}
$$

5. The $100(1-\alpha) \%$ standard confidence interval for the mean μ is given by

$$
I_{\alpha}=\left[\bar{X}-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right],
$$

where \bar{X} denotes the sample mean and $z_{\frac{\alpha}{2}}$ the point such that $P\left(N(0,1) \geq z \frac{\alpha}{2}\right)=\frac{\alpha}{2}$. The interval I_{α} has width

$$
\begin{equation*}
\text { width of } I_{\alpha}=2 z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \text {. } \tag{2}
\end{equation*}
$$

(a) If α increases, the width of I_{α} decreases. In fact, when α increases, we are requiring a lower probability that the confidence interval will contain the mean μ. Thus, the width of I_{α} will be smaller.
(b) If σ^{2} decreases then the width decreases. In particular, when the variance decreases by a factor 4 , the width of the confidence interval considered will halve.
(c) If n doubles, the width of the confidence interval considered here will decrease by a factor $\sqrt{2}$.
6. (a) The transition matrix P in canonical form is (rows/columns refers in order to the states $1,2,0,3$ in this order)

$$
P=\left[\begin{array}{cccc}
0 & 0.25 & 0.75 & 0 \\
0.75 & 0 & 0 & 0.25 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
Q & R \\
0 & I
\end{array}\right]
$$

(b) The fundamental matrix is $N=(I-Q) *^{-1}=\left[\begin{array}{cc}\frac{16}{13} & \frac{4}{13} \\ \frac{12}{13} & \frac{16}{13}\end{array}\right]$. To obtain the probability of bankrupt, i.e. the probability of being absorbed in the state 0 , we need to compute

$$
B=N R=\left[\begin{array}{cc}
\frac{16}{13} & \frac{4}{13} \\
\frac{12}{13} & \frac{16}{13}
\end{array}\right]\left[\begin{array}{cc}
\frac{3}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right]=\left[\begin{array}{cc}
\frac{12}{13} & \frac{1}{13} \\
\frac{9}{13} & \frac{4}{13}
\end{array}\right]
$$

Since the chain starts in the state 2 , the probability of being absorbed in 0 is $\frac{9}{13}=$ 0.692 .

