
Kapitel 1

Multiple regression

Multiple linear regression

The multiple linear regression model quanti�es the relationship between a
response variable and more than one regressor. The model has the form

Y = β0 + β1X1(Z1, . . . , Zp) + β2X2(Z1, . . . , Zp) + . . .+ βqXq(Z1, . . . , Zp) + ε

where

• Y is a response variable,

• Z1, . . . , Zp predictors,

• β1, . . . , βq parameters,

• X1, . . . , Xq known functions of the predictors, regressors.

• ε is the random error assumed to have mean 0 and variance σ2. Often
we assume ε ∼ N(0, σ2)

Multiple means that there is more than one regressor. However, there may be
only one predictor. The model is linear in the regressors, but not necessarily
in the predictors.

Examples

Some examples of speci�c multiple linear regression models
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• An additive model

Y = β0 + β1X1(Z1) +X2(Z2) + ε

X1(Z1, Z2) = Z1

X2(Z1, Z2) = Z2

• A model with an interaction term

Y = β0 + β1Z1 + β2Z2 + β3Z1Z2 + ε

X1(Z1, Z2) = Z1

X2(Z1, Z2) = Z2

X3(Z1, Z2) = Z1Z2

• A full quadratic model

Y = β0 + β1Z1 + β2Z2 + β3Z1Z2 + β4Z
2
1 + β5Z

2
2 + ε

X1(Z1, Z2) = Z1

X2(Z1, Z2) = Z2

X3(Z1, Z2) = Z1Z2

X4(Z1, Z2) = Z2
1

X5(Z1, Z2) = Z2
2

• Y = β0 + β1 log(Z1) + β2 sin(Z2) + ε

X1(Z1, Z2) = log(Z1)
X2(Z1, Z2) = sin(Z2)

Interpretation of the response surface

Considered as a function of the regressors, the response surface is de�ned by
the functional relationship

E(Y |X1 = x1, . . . , Xq = xq) = β1 + β1x1 + . . .+ βqxq.

If it is possible for the Xi to simultaneously take the value 0 then β0 is
the value of the response surface when all Xi equal 0. Otherwise, β0 has no
interpretation of its own. For i = 1, . . . , q, βi is interpreted as the change
in the expected response per unit change in the regressor Xi when all other
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regressors are held constant. Such an interpretation may not always make
sense if the regressors are dependent.

When the response surface is instead considered as a function of the
predictors,

E(Y |Z1 = z1, . . . , Zp = zp) = β1 + β1X1(z1, . . . , zp) + . . .+ βqXq(z1, . . . , zp),

the instantaneous rate of change of the surface in the direction of predictor
Zi at the point z1, . . . , zp is

d

dzi
E(Y |Z1 = z1, . . . , Zp = zp).

This of course requires that the regressors are di�erentiable functions of the
predictors.

The modelling process

We want to use a multiple linear regression model to

• describe the relation between the response and the predictors

• predict the response using known values of predictors

How to �nd a suitable model?

Graphical exploration

Matrices of scatterplots, 3D plots and brushing can be used to graph data
and empirically specify an appropriate regression model. These techniques
are easiest understood by trying them out on an example data set. Please
read section 8.5 in the book and apply the methods to the dataset TREES
available on the course webpage. Instructions for using MINTAB to achieve
this can be found in chapter 8 in Doing It with MINITAB, also available on
the course webpage.

A brush is a rectangle superimposed on a plot which highlights the data
points it encloses on the plot. In a scatterplot array a brush used on linked
plots can show the association between two variables conditional on a range
of values of a third variable.

Figure ?? shows measurements of tree volume (V ), height (H) and dia-
meter (D) for the purpose of estimating V from D and H. The association
between V and D or H is of primary interest, but look also at the association
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between H and D. Because of the strong positive association between V and
D it is no surprise that the scatterplot of D and H resembles that of V and
H.

The use of brushing is also illustrated. In the top �gure the brush is
used to select only points corresponding to small diameters D while in the
bottom one focus is restricted to those points corresponding to large values
of D. Notice how the pattern of the association between V and H changes
with changes in D. This is an indication of interaction.

Figur 1.1: Brushing on a scatterplot array.
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Fitting the model

Given n observations (Yi, Xi1, Xi2, . . . , Xiq), i = 1, 2, . . . , n, the parameters
β1, . . . , βq are (just as in simple linear regression) estimated by the method

of least squares as the values b1, . . . , bq which minimize

n∑
i=1

(Yi − (b0 + b1Xi1 + . . .+ bqXiq))2

The �tted values are

Ỹi = β̂0 + β̂1Xi1 + . . .+ β̂qXiq

and the residuals {ei : i = 1, . . . , n} are

ei = Yi − Ŷi = Yi − (β̂0 + β̂1Xi1 + . . .+ β̂qXiq).

The error variance σ2 is estimated by the mean square error

MSE =
∑n
i=1 e

2
i

n− q − 1

The divisor n− q−1 is the degrees of freedom associated with the MSE. The
degrees of freedom counts the minimum number of residuals that need to be
speci�ed to compute MSE.

Assessing the model �t

Once the model has been �t to a set of data, the next task is to evaluate
that �t. As with simple linear regression, residuals are the primary quantities
for evaluating the quality of a multiple linear regression �t. Please recapture
residual analysis from the preceding course.

Plot residuals against everything that seems interesting, e.g. Ŷi, time,
Xi1, Xi1, . . . (but not Yi). Any pattern indicates a bad model. Plots versus the
predictor variables are essentially the same for both ordinary and studentized
(deleted in MINITAB) residuals. The choice is a matter of taste.

The ith studentized residual is the ith ordinary residual divided by its
estimated standard error where observation i is dropped while estimating its
standard error.

Quantile plots for studentized (deleted) residuals. If the model is
correct, the studentized residuals will have a tn−q−2 distribution. If n− q−2
is large a normal quantile plot of the studentized residuals is an acceptable
alternative. Quantile plots should always be done with studentized residuals.

5



Detecting outliers with studentized residuals. Studentized residu-
als are useful in identifying outliers. As a rule of thumb, studentized residuals
larger than two in absolute value should be investigated as possible outliers.

Comparison of �tted models

If description of the phenomenon is the most important consideration, then
model simplicity and interpretability may be primary considerations. On the
other hand, perhaps prediction of the future observations is of primary im-
portance. Then accuracy and precision of prediction will be most important.

Sums of squares

The total sum of squares, SSTO =
∑n
i=1(Yij−Ȳ··)2, where Ȳ·· = n−1∑k

i=1

∑ni
j=1 Yij ,

is a measure of the total variation in the response. The error sum of squares,
SSE =

∑n
i=1 e

2
i , is the amount of variation left when the regression has be-

en accounted for and the regression sum of squares, SSR = SSTO − SSE
measures how much of the total variation that is explained by the regression.

The degrees of freedom for a sum of squares is the minimum number of
those squared terms needed to compute the sum of squares. The degrees of
freedom associated with SSTO is n − 1, with SSR is q and that associated
with SSE is n− q − 1. Notice that the degrees of freedom for SSR and SSE
add up to the degrees of freedom for SSTO.

When taking means of a sums of squares we divide that sum of squares
by its degrees of freedom. The resulting mean is called a mean square.

Coe�cient of determination

A numerical measure of the quality of the �t is the coe�cient of determina-

tion,

R2 =
SSR

SSTO
= 1− SSE

SSTO
= (Pearson correlation(Y, Ŷ ))2.

R2 is the proportion of the total variation in the response explained by
the regression model. It takes on values in [0, 1], with higher values indicating
higher proportion of variation explained by the model.

R2 will always increase as more variables are added. To avoid this unde-
sirable feature we can instead calcualte the adjusted coe�cient of determi-

nation,

R2
a = 1− SSE/(n− q − 1)

SSTO/(n− 1)
= 1− MSE

S2

6



where S2 is the sample variance and the second equality follows sinceMSE =
SSE/(n−q−1). R2

a can decrease if an additional regressor does not increase
R2 su�ciently.

The F-test

Is there evidence of a signi�cant relation between the response and the regres-
sors? The null hypothesis we want to investigate is that there is no relation
between the response and the regressor against the alternative that H0 is
false, that is

H0 : β1 = β2 = . . . = βq = 0
Ha : Not all the β's are 0

The statistic for testing H0 against Ha is F = MSR/MSE. The more
variation in the response the regressors explain the larger SSR becomes and
the smaller SSE becomes. This means that MSR becomes larger and MSE
smaller and therefore the quotient F becomes larger. Thus, small values of
F support the null hypothesis and large values of F provide evidence against
the null hypothesis and in favour for the alternative hypothesis.

It can be shown that F follows an Fq,n−q−1 distribution when H0 is true,
i.e. F = MSR/MSE ∼ Fq,n−q−1. If the p-value is too big another model is
needed.

Figur 1.2: Three di�erent F-distributions. The p-value is the area to the right
of the observed F-value.
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ANOVA table

The sums of squares, degrees of freedom and mean squares from a multiple
linear regression �t are summarized in an ANOVA table.

Source df SS MS F Prob > F

Model q SSR MSR F=MSR/MSE p-value
Error n-q-1 SSE MSE
Total n-1 SSTO

Individual t-tests

If the overall test shows that the model as a whole is statistically signi�cant
as a predictor of the response we want to know which of the regressors in
the model are statistically signi�cant predictors of the response.

That is, for each i we want to test

H0 : βi = 0

against
Ha : βi 6= 0.

It can be shown that under H0,

T =
β̂i

σ̂(β̂i)
∼ tn−q−1

where σ̂(β̂i) is the estimated standard error of β̂i.
Unless the regressors in the model are uncorrelated, individual t-tests

will depend on which other regressors are in the model.

Con�dence and prediction intervals for the response

Estimating the mean response

The mean response at speci�ed values of the regressor variables

E(Y |X1 = x1, . . . , Xq = xq) = β0 + β1x1 + . . .+ βqxq

may be estimated and a level L con�dence interval computed for it. A level
L con�dence interval for the mean response at regressor values x1, . . . , xq is

(Ŷ − σ̂(Ŷ )tn−q−1,(1+L)/2, Ŷ + σ̂(Ŷ )tn−q−1,(1+L)/2)
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where
Ŷ = β̂0 + β̂2x1 + . . .+ β̂qxq

and σ̂(Ŷ ) is the esimated standard error of the response.

Predicting a new observation

When predicting a new observation from data the standard error includes an
additional term that measures the uncertainity inherent in the measurement
or observation process itself. The estimate of this term is MSE. i.e. the
standard error of prediction of a new observation is

σ̂(Ynew − Ŷnew) =
√
MSE + σ̂2(Ŷ )

and a level L interval for a new response at regressor values x1, . . . , xq is

(Ŷ − σ̂(Ynew − Ŷnew)tn−q−1,(1+L)/2, Ŷ + σ̂(Ynew − Ŷnew)tn−q−1,(1+L)/2)

where
Ŷ = β̂0 + β̂2x1 + . . .+ β̂qxq

Indicator (�dummy�) variables

Sometimes it is necessary to use qualitative or categorical valued regressors,
e.g. sex, season or brand, instead of quantitative regressors such as height,
time or cost. Categorical variables have no natural scale of measurement. In
such cases indicators are used in the model to account for the e�ect that the
variable has on the response.

Consider a model, Y = β0 + β1X1 + β2X2 + ε involving one indicator
variable, X2. If the hypothesis H0 : β2 = 0 can be rejected then there is
evidence the qualitative variable is important in the model. In this case we
are actually dealing with two separate models,

E(Y |X1 = x1, X2 = 1) = β0 + β1x1 + β21 = (β0 + β2) + β1x1

E(Y |X1 = x1, X2 = 0) = β0 + β1x1 + β20 = β0 + β1x1.

The two models are linear with the same slope but di�erent intercepts.
Still, it is advatageous to use this model rather than simply �tting two se-
parate regression lines. The reason is that we obtain improved estimates of
the common slope β1 and the common variance σ2. A similar approach can
be used to model qualitative factors that have more than two levels. If our
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qualitative variable can take on k values then we can model it by combining
k − 1 indicator variables, I1, . . . , Ik−1. Let Ii = 1 if the qualitative variable
has the categorical value represented by i, Ii = −1 if it has value k and Ii = 0
otherwise. This technique is used in chapter nine og the book when formula-
ting the one-way model in terms of multiple linear regression regression, c.f.
p. 544-546 and p. 561-563.

Multicollinearity

Often two or more of the regressors will contribute redundant information.
Muliticollinearity occurs when the regressors are highly correlated among
themselves and has nothing to do with the response.

Two potentially serious consequences are

• The F-test shows a signi�cant overall regression relation but the t-test
for each individual β̂i is nonsigni�cant.

• The interpretation of β̂i as the change in the predicted response per
unit change in Xi when the other regressors are held constant becomes
questionable.

Multicollinearity does not a�ect the quality of the �t or inferences about
mean response or prediction of a new observation. Multicollinearity does
not actually bias results, it just produces large standard errors in the rela-
ted regressors. The best regression models are those in which the regressors

each correlate highly with the response but correlate at most only minimally

with each other. Multicollinearity may be unavoidable in some studies while
in many controlled experiments the levels of regressors may be selected to
eliminate it.

Multicollinearity can be detected by

• Tolerance, Toli = 1 − R2
i where R

2
i is the coe�cient of determination

from model with Xi as response variable regressed on the other q − 1
regressors is �tted. Toli takes on values between 0 and 1. Values less
than 0.1 are considered cause of concern.

• Variance in�ation factor, V IFi = 1/Toli. Values greater than 10 are
considered cause of concern.

Remedial measures
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• If the regressors are products or powers of the predictors, center the
predictors before taking the products or powers.

• Drop one or more regressor. Since variables that are causing the multi-
collinearity are highly correlated with other regressors. This should be
done cautiously, as it results in discarding potentially valuable infor-
mation and as the resulting model will still depend on which regressors
are discarded.

Backward elimination

Backward elimination is a method for empirical model building based on the
use of t-tests for signi�cance of individual regressors. It can be summarized
by the following steps

• Start with a model with all potential regressors

• Carry out the regression and investigate the p-values from the t-test
for each individual regressor.

• If any p-values are too big (> 0.1 is sometimes used as a rule of thumb),
remove the regressor corresponding to the biggest p-value.

• Perform a new regression analysis and repeat elimination until all
regressors are statistically signi�cant.

Example 1: Exercise 8.3-8.8 from the book

In an e�ort to understand what variables govern the leaching of lead solder
into drinking water a controlled experiment is performed. Fiftysix identical
lengths of copper pipe were each �tted with a single joint using a type of
lead based solder. Water of one of �ve known acidity levels was placed in
each pipe and left there for one of four possible durations. The pipes were
randomly assigned to the pH and duration combinations. At the end of the
time, the water was measured for lead concentration.

Variables:

• lead - lead concentration

• pH - acidity level of water
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• days - duration

How does the lead concentration depend on the acidity and duration?

Figur 1.3: Scatterplot arrays with brushing

Scatterplot arrays and brushing (�gure ??) indicates that the associa-
tion between lead and days depends on the values of pH. At low pH-values
there seems to be a strong positive linear association between the two while
there seems to be no, or only a weak, association at high pH-values. There-
fore we try a model with a interaction term (wher the predictors have been
centered to minimize multicollinearity), lead = β0+β1 cDays+β2 cPh+β3

cDays·cPh+ε.
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Figur 1.4: Residual plots

The regression equation is

lead = 16.0 + 0.560 cDays - 5.02 cPh - 0.496 cDays*cPh

Predictor Coef SE Coef T P VIF

Constant 15.9661 0.5915 26.99 0.000

cDays 0.56032 0.08013 6.99 0.000 1.000

cPh -5.0180 0.8729 -5.75 0.000 1.000

cDays*cPh -0.4955 0.1182 -4.19 0.000 1.000

S = 4.42655 R-Sq = 65.7% R-Sq(adj) = 63.7%

Analysis of Variance

Source DF SS MS F P

Regression 3 1949.83 649.94 33.17 0.000

Residual Error 52 1018.90 19.59

Total 55 2968.74
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Does the model �t?

• The residual plots show no obvious patterns (�gure ??).

• The coe�cient of determination is 65,7%, i.e. 65,7% of the variatation
in the data is explained by the model.

• The ANOVA table shows that a test for signi�cance of the model is
< 0.0001. We can discard the null hypothesis that the response lead is
not explained at all by this model.

• Test of the individual paramters β1, β2 och β3 yield p-values < 0.0001,
so all regressors seem to have signi�cant impact on the response. We
can discard the null hypothesis βi = 0 in favour of βi 6= 0 for i = 1, 2, 3.

• For all paramters the Variance in�ation factor (VIF) is one, so there is
no problem with multicollinearity.

If we do not center the predictor we will get very high multicollinearity,
V IF1 = 109.900 and V IF3 = 114.028. In this case the p-values associated
with β1, . . . , βq should be interpreted with care. Observe that the p-value
associated with pH, β2 is very high, 0.227.

The regression equation is

lead = - 9.5 + 4.06 days + 2.42 ph - 0.496 days*ph

Predictor Coef SE Coef T P VIF

Constant -9.52 14.04 -0.68 0.501

days 4.0645 0.8400 4.84 0.000 109.900

ph 2.415 1.977 1.22 0.227 5.128

days*ph -0.4955 0.1182 -4.19 0.000 114.028

S = 4.42655 R-Sq = 65.7% R-Sq(adj) = 63.7%

Analysis of Variance

Source DF SS MS F P

Regression 3 1949.83 649.94 33.17 0.000

Residual Error 52 1018.90 19.59

Total 55 2968.74

For comparison, we also �t a model without the interaction term, i.e.
an additive model, lead = β0+β1 days+β2 ph+ε. The MINITAB output
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bellow shows a drastic decrease in the adjusted coe�cient of determination
which supports our previous conclusion to include the interaction term in
the model.

The regression equation is

lead = 43.0 + 0.560 days - 5.02 ph

Predictor Coef SE Coef T P VIF

Constant 43.046 7.236 5.95 0.000

days 0.56032 0.09180 6.10 0.000 1.000

ph -5.018 1.000 -5.02 0.000 1.000

S = 5.07126 R-Sq = 54.1% R-Sq(adj) = 52.4%

Analysis of Variance

Source DF SS MS F P

Regression 2 1605.70 802.85 31.22 0.000

Residual Error 53 1363.03 25.72

Total 55 2968.74

Example 2: Backwards elimination

We are given a data set that consists of weight and measurement of length/
diameter/width of fore, waist, height, thigh, shoulder, bicep, neck, chest, calf
and head width 22 healthy men aged 16-30. Is there any association between
weight and the other measurements?

Matrix plots (not shown) indicate that most of the variables seem to
have a positive linear association with weight. We start by including all me-
asured variables as predictors in a linear additive model and use backwards
elimination until all remaining parameters are signi�cant (p-value < 0.1).

Step Regressor p-val R2 R2a

1 shoulder 0.91 0.977 0.956

2 bicep 0.73 0.977 0.960

3 neck 0.54 0.977 0.963

4 chest 0.31 0.976 0.964

5 calf 0.16 0.974 0.964

6 head 0.13 0.971 0.962
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The output shows the regressor with the highest p-value that was elimi-
nated as well as the coe�cient of determination in each regression. Note that
R2 is higher the more parameters that are in the model, while R2

a �rst incre-
ases as we remove parameters, an indication of a better model. After calf is
removed it decreases, but the decrease is minimal so the gain in simplicity
might be advanatageous.

The MINITAB output of the �nal model is

The regression equation is

Mass = - 113 + 2.04 Fore + 0.647 Waist + 0.272 Height + 0.540 Thigh

Predictor Coef SE Coef T P VIF

Constant -113.31 14.64 -7.74 0.000

Fore 2.0356 0.4624 4.40 0.000 3.3

Waist 0.6469 0.1043 6.20 0.000 2.7

Height 0.27175 0.08548 3.18 0.005 1.2

Thigh 0.5401 0.2374 2.27 0.036 3.0

S = 2.249 R-Sq = 96.6% R-Sq(adj) = 95.8%

Analysis of Variance

Source DF SS MS F P

Regression 4 2438.17 609.54 120.53 0.000

Residual Error 17 85.97 5.06

Total 21 2524.15

Of course we also need to investigate residual plots (no obvious patterns,
not shown) and multicollinearity (all VIF < 10). We have managed to cut
the number of regressors from ten to four, resulting in a model that is easier
to use and interpret. An alternative to backwards elimination provided by
MINITAB is stepwise regression. For this particular dataset this method
yields exactly the same model.
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Kapitel 2

The one-way model

One-way means model

The one-way means model is used to compare the means of several po-
pulations simultaneously. The experimental situation may be either of the
following:

• We have k populations, each with some common characteristic to
be studied in the experiment. Independent random samples of sizes
n1, n2, . . . , nk are selected from each of the k populations, respectively.
Di�erences observed in the measured response are attributed to basic
di�erences among the k populations. Let n denote the total number of
observations.

• We have a collection of n homogenous experimental units and wish
to study the e�ect of k di�erent treatments. These units are randomly
divided into k groups of sizes n1, n2, . . . , nk and each subgroup recieves
a di�erent experimental treatment. The k subgroups are viewed as
constituting independent random samples of size n1, n2, . . . , nk drawn
from k populations.

Both cases result in independent random samples drawn from populations
with means µ1, . . . , µk. Our interest is in testing if the population means are
equal.

The one-way means model

The general one-way means model for k populations is

Yij = µi + εij , j = 1, . . . , ni, i = 1, . . . , k (2.1)
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where

• Yij is observation j from population i.

• µi is the mean of the ith population. µi can be estimated by
µ̂i = Ȳi· =

∑ni
j=1 Yij/ni

• εij is the random error associated with the jth observation from po-
pulation i. εij are assumed to be independent N(0, σ2) variables. I.e.
each of the k populations has the same variance σ2.

The one-way e�ects model

Amodel that is equivalent to the one-way means model but which emphasizes
the di�erential e�ects that each population has on the mean response rather
than the population mean responses themselves is the one-way e�ects model.

Yij = µ+ τi + εij , i = 1, . . . , k, j = 1, . . . , ni

where Yij and εij have the same interpretation as in ?? and

• µ =
∑k
i=1 µi/k. If all population means are equal, then µ is the common

value of that mean. The least squares estimator of µ is µ̂ = Ȳ·· =
k−1∑k

i=1 Ȳi· = n−1∑k
i=1

∑ni
j=1 Yij

• τi is the e�ect due to the ith population/treatment, τi = µi − µ. Note
that it follows from the de�nition of τi that

∑k
i=1 τi = 0. The least

squares estimator of τi is τ̂ = Ȳi· − µ̂

The e�ects model expresses mathematically the idea that each response can
be partitioned into three recognizable components as follows

Response of
jth unit to
ith experi-
ment

= overall mean
response

+ deviation
from overall
mean due to
the fact that
unit received
ith treatment

+ random deviation
from ith popula-
tion mean due to
random in�uences
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Testing the equality of population means

The most basic question is whether the population means are all the same.
This can be answered by analysis of variance (ANOVA), a technique where
the total variation in a response is divided into a number of components
attributable to di�erent sources. The total variation in a response is measured
by the sum of squares total,

SSTO =
k∑
i=1

ni∑
j=1

(Yij − Ȳ··)2.

The sum of squares error measures the unexplained variation after the
model has been �t to the data. SSE is the sum of the squares of the residuals,

SSE =
k∑
i=1

ni∑
j=1

(Yij − Ȳi·)2 =
k∑
i=1

ni∑
j=1

e2ij .

The di�erence SSM = SSTO− SSE is called the sum of squares model

and measures how much �tting the model reduces the variation. It can be
computed as

SSM =
k∑
i=1

ni(Ȳi· − Ȳ··)2.

The degrees of freedom for a sum of squares is the minimum number of
those terms making up that sum of squares needed to compute the sum of
squares. The degrees of freedom associated with SSE and SSM are n−k and
k−1 respectively. Associated with SSTO is (n−k) + (k−1) = n−1 degrees
of freedom. The mean square associated with a sum of squares is computed
by dividing the sum of squares by its degrees of freedom.

We compare variance explained by the model to variance not accounted
for. The hypothesis

H0 : µ1 = . . . = µk
Ha : Not all µi equal

or equivalently if we instead choose to express the model in terms of e�ects,

H0 : τ1 = . . . = τk = 0
Ha : At least one τi 6= 0,
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is tested by

F =
SSM/(k − 1)
SSE/(n− k)

=
MSM

MSE

When H0 is true, both MSM and MSE estimate σ2 and it can be shown
that F follows an Fk−1,n−k distribution.

ANOVA table

As in multiple linear regression the sums of squares, degrees of freedom and
mean squares from a one-way model are summarized in an ANOVA table.

Source df SS MS F Prob > F

Model q SSM MSM F=MSM/MSE p-value
Error n-q-1 SSE MSE
Total n-1 SSTO

Multiple comparisons

In many cases the F test may be signi�cant, but gives no indication of which
pairs of means that di�er from each other. If multiple tests at level L are
performed the probability that at least one Type I error, i.e. making at least
one incorrect rejection and therefore drawing an incorrect conclusion, would
be committed would be greater than L. Consider a set of k population means.
There are

(k
2

)
= k(k − 1)/2 possible tests of the form

H0 : µi = µj
Ha : µi 6= µj

that can be conducted. If m independent tests at signi�cance level L are
performed the probability of at least one incorrect rejection is

P (at least one Type I error) = 1− P (no Type I errors)
= 1− (1− L)m

For example, suppose we perform all 5(5 − 1)/2 = 10 possible pairwise
comparisons of �ve population means at the individual signi�cance level
L = 0.05. Even though the probability of making a Type I error on any
given test is only 0.05, the risk of incorrectly rejecting a true H0 in at least
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one of the 10 tests increases dramatically to 1 − (1 − 0.05)10 = 0.40 in a
worst case scenario.

In many multiple comparisons the tests are not independent, but it can
be shown that the independent case provides an upper bound for the overall
signi�cance level. This worst case scenario provides the basis of the Bonfer-
roni correction. Each individual test is performed at level L/m, where m is
the total number of comparisons, to achieve a test whose signi�cance level is
at most L. As k increases the overall probability of error may become unac-
ceptably high. To compensate for this, it is recommended that only those
tests of real interest are performed.

Bonferroni correction is often very conservative. The Tukey comparison
procedure is an e�ective alternative for comparing all

(k
2

)
pairs of means.

It accounts for the distribution of the di�erence of the largest and smallest
means and therefore automatically also accounts for the smaller di�erences
of all the other means.

Con�dence intervals for multiple comparison procedures

A set of Tukey con�dence intervals for all pairwise comparisons of k popu-
lation means with overall con�dence level L, computes the interval µi − µj
as

µ̂i − µ̂j ±

√√√√MSE

(
1
ni

+
1
nj

)
q1−α,k,n−k√

2
,

where q1−α,k,n−k is the right hand tail of a statistic following the studentized
range distribution with (k, n− k) degrees of freedom.

A set of Bonferroni con�dence intervals for comparing m pairs of popu-
lation means with overall con�dence level L, computes the interval µi − µj
as

µ̂i − µ̂j ±

√√√√MSE

(
1
ni

+
1
nj

)
t1− α

2m
,n−k.

For a given con�dence level L we want the shortest intervals possible.
If we are comparing the di�erences of all pairs of means, and if the sample
sizes are equal, then the Tukey intervals are optimal. If we want to compare
fewer than all pairs of means, or if the sample sizes aren't all equal, then
the Bonferroni intervals might prove shorter. The widths of the Bonferroni
and Tukey intervals are determined by their multipliers. Since computing the
multipliers does not involve the data, we may initially compute the multipli-
ers and choose the method giving the shorter multiplier before computing
the intervals.
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Checking model assumptions

After the model is �t and before the model is analysed further the �t must
be checked to see to what extent the model assumptions are satis�ed. The
main assumptions are that the random errors εij are independent N(0, σ2)
variables.

Normality

To investigate the assumption of normality the principal tools are plots of
the residuals eij = Yij − µ̂i = Yij − Ȳi·, n = 1, . . . , k. Normality is chec-
ked by plotting the studentized residuals versus the quantiles of the tn−k−1

distribution. Also, patterns in plots strati�ed by population may indicate
departures from the model assumptions. Plots versus �tted values, and if
available, blocks, should be done as well.

The F-test is robust to departures from normality, i.e. unless the nonnor-
mality is severe it will have little e�ect on the test. If the sample sizes are not
too small individual and multiple comparisons are robust to nonnormality
too.

Equal variances

Even if the populations under study have a common variance the sample
variances S2

i will not be equal. Comparison to simulated values can be use-
ful. The assumption can also be tested by Bartlett's test (not in the book).
Di�erences in spread in plots strati�ed by population indicates heterosce-
dasiticity (unequal variances). However, the if the sample sizes ni are equal
or nearly equal, the F test is robust to heteroscedasiticity. Individual and
multiple comparisons are not.

Suggested remedies for heteroscedasiticity include transformation of the
response Y and weighted analysis in which observations from samples with
large variances are given less weight (not in the book).

Independence

Independence of the error is di�cult to check. In this course the best we
can do is to use this model only for populations that are not related and
to select the samples from the populations randomly and independently of
each other. If repeated measurements are taken on the same experimental
unit more sophisticated models are required.
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Blocking in the one way model

In some experiments, there are factors that vary and have an e�ect on the
response, but whose e�ects are not of interest to the experimenter. For ex-
ample, in one commonly occuring situation, it is impossible to complete an
experiment in a single day, so the observations have to be spread out over
several days. If conditions that can a�ect the outcome vary from day to day,
then the day becomes a factor in the experiment, even though there may be
no interest in estimating its e�ect.

Sometimes large variation between sampling units makes it di�cult to
observe di�erences in the population means of interest. In blocking, the samp-
ling units are grouped into blocks of homogeneous units, and comparisons
between populations are observed within each block. Accounting for an ob-
servable extraneous source of variation improves sensitivity and precision.

Randomized Complete Block Design

A design in which experimental units are assigned to treatments at random,
with all possible assignments equally likely, is called a completely randomized

design (CRD).
A complete block design is a design where every possible combination of

treatments and blocks is included.
A randomized complete block design (RCBD) is a complete block design

in which a completely randomized design is run within each block.
Randomized complete block designs can be constructed with several tre-

atment factors and several blocking factors. We will restrict our discussion
to the case where there is only one tratment factor and only one blocking
factor.

A RCBD di�ers from a CRD in that the RCBD forces observations from
each population to appear in each block.

Example: CBR vs. RCBD Three di�erent types of fertizliers are to be
evaluated for their e�ect on yield of fruit in an orange grove, and a total of
three replicates till be performed, for a total of nine observations. An area is
divided into three rows. Assume there is a water gradient along the plot area,
so that the rows recieve di�ering amounts of water. The water is now a factor
in the experiment even though there is no interest in estimating the e�ect of
water amount on the yield of oranges. If the amount of water has negligible
e�ect on the response a CRD is appropriate (�gure ??). If however, the water
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level does have a substantial impact on the response, di�erent arrangements
of the treatments bias the estimates in di�erent directions. A better design
in this case is a RCBD with water as blocking factor (�gure ??).

Figur 2.1: CRD. Two possible arrangements of A, B and C assigned to nine
plots completely at random.

Figur 2.2:RCBD. Two possible arrangements of A, B and C with the restric-
tion that each of them must appear once at each row (block).

The randomized complete block model

The randomized complete block (RCB) model is

Yij = µ+ τi + γj + εij , i = 1, . . . , k; j = 1, . . . , b. (2.2)

Here there are k populations and b blocks and

• µ is the overall mean.

• τi is the e�ect due to population i.

• γj is the e�ect due to block j.

• εij are random errors assumed to be independent and N(0, σ2) distri-
buted.

The e�ect of population i and block j is τi+γj , i.e. the model is additive.
The least squares estimators of µ, τi and γj are
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µ̂ = Ȳ··, τ̂i = Ȳi· − µ̂ and γ̂i = Ȳ·j − µ̂

respectively. The formulation of the model says that
∑k
i=1 τi =

∑b
j=1 γj = 0.

τi describes the shape of the curve while γj describes the height of the
curve relative to the other curves.

The object of a randomized compelete block design is to estimate the
main e�ects, there must be no interaction between treatment and blocking
factors.

Testing the equality of population means

To test for equality of means we compare the variation attributed to di�e-
rences in populations and to di�erences in blocks. The total variation in the
response,

SSTO =
k∑
i=1

b∑
j=1

(Yij − Ȳ··)2,

is divided into three components, SSTO = SSP + SSB + SSE, where

SSP =
k∑
i=1

b∑
j=1

(Yi· − Ȳ··)2 = b
k∑
i=1

(Yi· − Ȳ··)2

is variance attributable to di�erences in populations,

SSB =
k∑
i=1

b∑
j=1

(Ȳ·j − Ȳ··)2 = k
b∑

j=1

(Ȳ·j − Ȳ··)2,

where Ȳ·j =
∑b
i=1 Yij/b, variance attributable to di�erences in blocks and

the remainder, SSE =
∑k
i=1

∑b
j=1 e

2
ij =

∑k
i=1

∑b
j=1(Yij − Ȳi· − Ȳ·j + Ȳ··), is

the amount of variation that the model fails to explain,
The mean squares are again obtained by dividing the sum of squares with

its associated degrees of freedom giving,MSTO = SSTO/(kb−1),MSP =
SSP/(k − 1), MSB = SSB/(b− 1) and MSE = SSE/((k − 1)(b− 1)).

For testing

H0τ : τ1 = . . . = τk = 0
Ha : Not all the population e�ects τi are 0

it can be shown that under H0τ F
τ = MSP/MSE ∼ Fk−1,(k−1)(b−1).

25



ANOVA table

The sums of squares, mean squares, test statistics and p-values can again be
summarized in an ANOVA table.

Source df SS MS F Prob > F

Population k-1 SSP MSP F τ=MSP/MSE p-valueτ

Blocks b-1 SSB MSB F γ=MSB/MSE p-valueγ

Error (k-1)(b-1) SSE MSE
Total kb-1 SSTO

Checking model assumptions

In addition to the general conditions that must be ful�lled for the one way
model, the additivity assumption needs to be checked when blocking. A
curvlinear pattern in the plot of residuals versus predicted values is often
symptomatic of an interaction between blocks and populations. This means
the addititivity assumption in the RCB model is incorrect. Another graphical
way to detect severe interaction in the RCB model is to draw interaction
plots. Additivity can also be tested by Tukey's test for additivity. This test
is not avaiable as standard in MINITAB, but can be implemented as a macro.

If interaction is found, the RCB model is not valid. Transforming the
response variable might eliminate the interaction, otherwise the experimental
plan has to be changed and more data collected.

Pros and cons of blocking

• Pro Blocking will remove variation from the analysis, which in turn
will increase the power of the test

• Con If blocking is used in the wrong way important information will
be discarded. The degrees of freedom will be lower. The in�uence of
this potential drawback will decrease with sample size.

Example: RCBD

Three fertilizers are studied for their e�ect on yield in an orange grove (table
??). A RCBD is used with each fertilizer applied once in each block.
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Fertilizer Plot 1 Plot 2 Plot 3

A 430 530 315
B 367 463 253
C 321 421 209

Figur 2.3: Orange yield

Figure ?? shows that yield per fertilizer. Fertilizer one has the highest
sample mean, but is the di�erence statistically signi�cant? The following out-
put from MINITAB shows that when the data is analysed without blocking
the answer is no. The p-value associated with the F-test for no di�erences in
mean response is high, 0.506.

Analysis of Variance for Yield, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

Fertilizer 2 17887 17887 8943 0.76 0.506

Error 6 70157 70157 11693

Total 8 88044

S = 108.133 R-Sq = 20.32% R-Sq(adj) = 0.00%

However, when we preform the same analysis with plot as blocking factor
the restult is markedly di�erent. The MINITAB output shows that we can
discard the hypothesis of equal variances with great con�dence.

Analysis of Variance for Yield, using Adjusted SS for Tests
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Source DF Seq SS Adj SS Adj MS F P

Fertilizer 2 17696 17696 8848 3792.00 0.000

Plot 2 67741 67741 33870 14515.86 0.000

Error 4 9 9 2

Total 8 85446

S = 1.52753 R-Sq = 99.99% R-Sq(adj) = 99.98%

Barlett's test gives no reason to doubt the assumption of equal variances
and the residual plots show no obvious pattern. Also, the quantile plots
support the assupmtion of normality of the error. Interaction plots show no
sign of interaction between the blocking factor and the fertilizer. We conclude
that the model assumptions are ful�lled and the tests valid.
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