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1 Introduction

The purpose of this laboratory exercise is to illustrate an important engineering application where random
processes play a crucial role, namely a digital communication system. The exercise has been adapted
from a previous project in Digital Communications by Erik Ström. The laboratory project is mandatory.
To get a pass, you need to hand in a short report with your results and the Matlab code used to run the
simulations. The deadline for handing in the report will be posted on the course homepage.
The task for a communications system is to transfer a signal from some source to a remote user with a
sufficient quality. Depending on the nature of the message, the user can tolerate more or less distortion.
A speech signal usually puts significantly less demands on the transmission than for example transfer of
a file. On the other hand, the speech signal needs to be transferred in real time with a small time delay.
In a digital communication system, the message signal is somewhere in the communication link represented
by a sequence of binary words with a finite number of bits. If the source signal is analog, this means that
it must be sampled and quantized before transmission. This gives rise to distortion, even if the sampling
rate is high enough to fulfill the sampling theorem.
The fact that the transmitted signal is represented in digital form means that we can quantify the quality
of the transmission by the probability of detecting the wrong bit, i.e. the Bit-Error Rate (BER) Pb. If
Pb = 0, the system is perfect, whereas if Pb = 0.5 it is quite useless.
A communication system consists of a transmitter, a channel and a receiver. The transmitter starts with
a source signal, then applies source coding, channel coding and finally modulation to put the signal into
a format that fits the channel. The receiver performs the reverse operations, ending with a detector that
decides the message bits and presents them to the user in a suitable form. In general, the source signal is
of random nature, and can be well modelled as a stochastic process. In a wireless communication system,
the channel adds to the randomness, since the propagation paths can be considered random. Finally,
the receiver circuitry introduces ”measurement noise”, due to random fluctuations of currents around the
”true” values. In addition, the system may be subject to interference from other users that would also
be modelled as random. Thus, modelling and understanding a communication system requires a good
background in stochastic processes. The reader is referred to [1], Chapters 8 and 10 (especially 8.3, 10.1
and 10.5) for some background material.
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2 Noise in Electrical Circuits

All electrical conductors contain free electrons. If the temperature of the conductor exceeds 0 degrees
Kelvin (K), the free electrons will exhibit random movements (Brownian motion) in the conductor. This
introduces a random current which is generally referred to as thermal noise.
In Figure 1, a model of a noisy resistor is shown. In this model, the noisy resistor is replaced by a noiseless
resistor and a random voltage source v(t).
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Figure 1: A model of a noisy resistor, using a random voltage source and an ideal resistor.

It can be shown that the thermal noise v(t) can be well modelled as a stationary Gaussian stochastic
process with zero mean (E[v(t)] = 0) and a variance that is proportional to the temperature T (in K):

E[v2(t)] ≈ 4RkTB

Here, k ≈ 1.38×10−23 is Boltzman’s constant and B is the receiver bandwidth in Hz. The approximation
is valid for frequencies up to at least 100 GHz, which is sufficient for most practical applications. Also, the
spectrum of the thermal noise is approximately flat in this frequency range, so v(t) can for most practical
purposes be modelled as a white noise. This means that v(t1) and v(t2) can be considered uncorrelated,
provided t1 and t2 are not ”too close”. See e.g. [2] for more details about thermal noise.
A communication receiver consists among others of electrical circuits like filters and amplifiers. Most
components in these circuits will add noise. Just like one can replace a noisy resistor with a noiseless
one and a random voltage source, it is common to model a communication receiver as an ideal receiver
that includes a random noise source. In general, the noise can affect the amplitude and the phase of
the receiver output as well as adding a random voltage. However, to first order the noise can always be
modelled as purely additive, similar to Figure 1.

3 A Simple Binary Communication System

In this laboratory exercise we will study a simple binary communication system, without a source or
channel coder. The source is assumed to be a speech signal, sampled at the rate fs = 8 kHz. Each sample
is quantized to 8 bits, which are here represented as ±1 rather than 1 and 0. Thus, the data rate for the
system is 8×8 = 64 kbit/s, which means that a bit has to be transferred every T = 1/64×103 ≈ 15.6 µs.
This is achieved by transmitting a certain waveform s(t) if the information bit is 1, or −s(t) if it is −1.
The duration of the waveform is T , so s(t) = 0 for t < 0 and t > T . For simplicity, we will assume that
the waveform is just a rectangular pulse

s(t) =
{

A 0 < t < T
0 t < 0 or t > T

In practice, there is also a modulation by some carrier frequency, cos ωct. However, this will be ignored
in our system model, assuming that the demodulator has perfectly recovered the baseband signal.
Due to the random nature of speech, we can assume that the information signal is a stochastic process that
can be considered (weakly) stationary over some observation interval. Thus, the bitstream is modelled
by

bn =
{

1 w.p. p
−1 w.p. 1− p
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It is further assumed that bn and bm are statistically independent for n 6= m. Thus, bn is a discrete-time
white noise. The transmitted signal in the interval nT ≤ t < (n + 1)T is simply the multiplication of bn

and s(t). For a block of N bits {bn}N−1
n=0 , this can be compactly expressed as

tx(t) =
N−1∑
n=0

bns(t− nT )

A realization of such a transmitted signal is shown in Figure 2.
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Figure 2: Transmitted waveform corresponding to the bitstream 10110100 and for A=T=1.

The signal tx(t) is transmitted over a so-called AWGN (Additive White Gaussian Noise) channel. The
power loss due to the transmission is ignored, so the effect of the channel is assumed to be just a zero-
mean additive Gaussian noise w(t). The spectrum of the noise is assumed to be constant over the receiver
bandwidth, which means that the noise behaves like a continuous-time white noise. The spectral density
of the noise is denoted N0/2, which is a tradition used in most literature. Thus, the auto-correlation
function of the noise is modelled as

rw(τ) = E[w(t)w(t− τ)] =
N0

2
δ(τ) ,

where δ(τ) is Dirac’s delta function. In reality, the bandwidth is limited, implying that the autocorrelation
function must have a non-zero extension rather than being a perfect impulse function. However, the model
given above is sufficient to give accurate performance predictions of the system we are studying.
The received signal is the sum of the transmitted signal and the noise,

rx(t) = tx(t) + w(t)

The task of the receiver is to recover the transmitted bits bn from the observed signal rx(t). Due to the
presence of noise, the detected bits b̂n will not all be correct. The BER (Bit-Error Rate) is defined as

Pb = Pr(b̂n 6= bn)

and is assumed to be the same for all n due to stationarity. It can be shown that the optimal receiver
in the sense of minimizing Pb consists of a so-called matched filter, which is defined by h(t) ∝ s(T − t).
Since A is generally not known at the receiver but T is, we normalize the filter to be

h(t) =
{

1/
√

T 0 < t < T
0 t < 0 or t > T

The nth bit is then detected according to

y(t) = rx(t) ∗ h(t) , y[n] = y(t)|t=nT+T , b̂n = sgn{y[n]}
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Figure 3: A model of a binary communication system with transmitter, AWGN channel and receiver.

The full system model is illustrated in Figure 3.

Task 1 Show that the received sample y[n] can be expressed as

y[n] =
√

Ebn + wn

where E = A2T is the bit energy, and

wn =
1√
T

nT+T∫

t=nT

w(t)dt

is the integrated noise over the bit interval.

The next step in the analysis is to derive the BER for our simple communication system. Given that
bn = −1 is transmitted in the interval nT < t < nT + T , the detected bit will be erroneous if

b̂n = 1 ⇔ y[n] > 0 ⇔ −
√

E + wn > 0 ⇔ wn >
√

E

Clearly, errors happen only when the noise takes on a sufficiently large value, and with an unfavorable
sign. The conditional BER, given that a -1 is transmitted is therefore

Pb|−1 = Pr(b̂n = 1|bn = −1) = Pr(wn >
√

E)

Similarly, when a 1 is transmitted we get

Pb|1 = Pr(b̂n = −1|bn = 1) = Pr(wn < −
√

E)

The total BER is finally given by
Pb = pPb|1 + (1− p)Pb|−1

In most cases the noise will be symmetrically distributed, and we see that Pb = Pb|1 = Pb|−1. In either
case, to compute the BER it is necessary to know the distribution of the noise samples.

Task 2 Determine the distribution of wn! In particular, find the mean and the auto-correlation functions.
Then give an expression for the BER Pb in terms of the bit energy and the noise power N0.

4 Simulation of a Communication System

For certain simple communication systems we can compute the BER exactly. However, most systems
are so complicated that we have to rely on simulations to determine the BER and other performance
measures. The principle to determine Pb empirically is simple:

1. Create a realization {bn}N−1
n=0 of the transmitted bit stream.

2. Generate a realization {wn}N−1
n=0 of the discrete-time noise process.
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3. Sum the above to get the sampled match-filter output y[n] =
√

Ebn + wn.

4. Apply the detector to get the bit estimates b̂n = sgn{y[n]}.
5. Compute the error indicator function {g[n]} as

g[n] = |b̂n − bn|/2 =
{

1 , b̂n 6= bn

0 , b̂n = bn

6. Estimate the BER by the empirical error rate over the data block:

P̂b =
1
N

N−1∑
n=0

g[n]

Since the data in the simulation are generated exactly according to the ”true” model, the error indicator
function is a Bernoulli random variable ([1], p. 31)

Pr(g[n] = 1) = p , Pr(g[n] = 0) = 1− p

Also, g[n] and g[m] are independent if n 6= m. Equipped with these insights we can analyze the quality
of the estimate P̂b of Pb.

Task 3 Show that E[P̂b] = Pb, i.e. P̂b is an unbiased estimator. Then determine the estimation error
variance

σ2 = E[(P̂b − Pb)2]

A confidence interval for Pb with the confidence 1− α is an interval (L,U) such that

Pr(L ≤ Pb ≤ U) ≥ 1− α

We would of course like to have a confidence interval for Pb centered at the point estimate P̂b. To get
this, we must know the distribution of P̂b. It is possible to get the exact distribution in this case, but
for reasonably large N it is much simpler to invoke the Central Limit Theorem (CLT). According to the
CLT, P̂b is distributed as N(Pb, σ

2) for large N . Based on this result it is easy to determine the required
confidence interval.

5 Simulation Task

Through listening tests it has been found that Pb must be less than 10−3 in order for the speech quality
to be acceptable.

Task 4 Determine analytically the required amplitude A to give the BER Pb < 10−3 when the channel
noise has the spectral density N0/2 = 2× 10−8.

Task 5 Simulate the communication system using the previously computed value of A and N0/2 =
2 × 10−8. Use a data length N which is long enough that the estimated BER P̂b fits into the interval
(0.5× 10−3, 2× 10−3). Give the estimate P̂b, the confidence interval and the number of transmitted bits
N in the simulation.

It can be difficult to compute the smallest N to achieve the desired confidence interval. However, this is
not necessary here. Just make sure that N is big enough, for example by plotting the achieved confidence
intervals versus N in Matlab, assuming P̂b = 10−3.
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6 Selected Answers

Task 2

The noise sample wn is Gaussian distributed with zero mean and autocorrelation function

rw[n] =
{

N0
2 n = m
0 n 6= m

The error probability can be expressed as

Pb = Q

(√
2E

N0

)

whrer the function Q(x) is the tail area of the N(0, 1) distribution:

Q(x) =
1√
2π

∞∫

x

e−τ2/2dτ

Task 4

The required amplitude is

A =

√
N0

2T
Q−1(Pb) ≈ 0.111

where Q−1(x) is the inverse function of Q(x).
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