
Laboratory Exercise 2:

Spectral Analysis and Optimal Filtering

Random Processes With Applications (MVE 135)

Mats Viberg
Department of Signals and Systems
Chalmers University of Technology

412 96 Gteborg, Sweden
Email: viberg@chalmers.se

Oct. 2007

1 Introduction

The purpose of this lab is to provide some hands-on experience and to give a better understanding of
spectral analysis and Wiener filtering. The focus in this lab is on the discrete-time case, i.e., digital
signals. After completing the lab, the student should be able to analyze a given signal with different non-
parametric and parametric (AR) methods, and select appropriate windows etc. based on prior knowledge
and the analysis results. The student should also be able to select a suitable order and to compute FIR
Wiener filters for given signal scenarios. This involves theoretical calculation of the autocorrelation and
cross-correlation functions for simple cases. He/she should also have a good understanding of the benefits
and the limitations of such filters. A theoretical background to the topics under study is given in [1].
The tasks are performed in Matlab, using mostly commands from the Signal Processing Toolbox. The
exercise is time consuming (expect to spend at least 10 hours) and there are many tasks. It is a good idea
to start with the first tasks immediately, although the theoretical background for the latter tasks is still
lacking. The results should be documented in a short report. You are allowed to collaborate in groups of
up to three persons. The deadline for handing in the report is Friday Oct. 19, 17.00. Submit the report
by email to viberg@chalmers.se, or put a hardcopy in the box outside the office of Mats Viberg, ED
building room 6414.

2 Spectral Estimation

The first part of the lab deals with spectral estimation. You will investigate various methods using
simulated data. All experiments assume discrete-time data. A sequence of ”observed” data x[n], n =
0, 1, . . . , N − 1 will be generated from a true model, which is a stationary AR or ARMA model. In the
first part you will apply non-parametric (Fourier-based) methods. The periodogram is first applied, and
then its various modifications. After that you will get some experience from parametric AR modeling.

Task 1: The Periodogram and Averaging

The first test system is the AR(2) model:

x[n]− 1.5x[n− 1] + 0.64x[n− 2] = e[n] ,

Spectral Analysis and Optimal Filtering, MVE 135 2

where e[n] is WGN with zero mean and variance σ2
e = 1.

1. Plot the true spectrum, which is given by P (ejω) = |G(ejω)|2, with G(z) = 1/A(z). Use the
command freqz in Matlab1. Plot the spectrum versus the frequency axis f=0:0.01:0.5; (unit:
”per sample”). Use linear amplitude and frequency scales.

2. Generate N+L samples of data according to the above model, where N = 1024 and L = 50. Use the
randn and filter commands in Matlab. Then, discard the first L samples of the data to ensure that
the simulated data is stationary. In Matlab, this can easily be done by x=x(L+1:N);. Next, estimate
the spectrum using the Periodogram. Follow the steps 1) X=fft(x,N);, 2) P=X.*conj(X)/N;, and
3) P=P(1:N/2); (since the spectrum of real-valued signals is symmetric). Plot the Periodogram
versus the frequency axis f=0:1/N:(N-1)/(2*N); Compare the periodogram and the true spectrum.
Comment on the result!

3. Clearly, the original Periodogram is a very noisy estimate of the true spectrum, although it appears
to be ”on average” correct. The first attempt to improve the situation is to divide the data into K
non-overlapping segments, each of length M = N/K. Then the periodograms from each segment
are averaged. This is called Barlett’s method, or just periodogram averaging. In Matlab, this is
most conveniently done by 1) xx=reshape(x,M,K);, 2) XX=fft(xx);, 3) PP=XX.*conj(XX)/M;, 4)
PB=mean(PP’);, and 5) PB=PB(1:M/2)’;. Apply Bartlett’s method using first K = 4 and then
K = 16. Plot the resulting spectral estimates along with the true spectrum in the same plot. What
is the benefit of periodogram averaging? What is the drawback?

Task 2: Windows in the Time and Frequency Domains

Windowing plays a key role in all non-parametric spectral estimates. So far you have used a rectangular
window. This gives the most narrow mainlobe (=best frequency resolution), but very high sidelobes
(=frequency masking). In this task, you will experiment with Matlab’s graphical user interface wintool
in order to get some familiarity with the some common window functions. Start the GUI by typing
wintool.

1. Make a table that compares the window shapes ”rectangular”, ”bartlett” (triangular), ”hann”
(or Hanning), and ”hamming”. Compare the performance parameters ”mainlobe width” (3 dB,
twosided) and ”peak sidelobe”, in dB relative the mainlobe. Use the lengths N = {16, 32, 64, 128}
respectively. How do the two performance parameters depend on N for the different windows?

2. For N = 128, apply a Chebyshev window with the same peak sidelobe as the Hamming window.
Which of the two has the better frequency resolution?

3. Finally, look at a Flat Top window of length 128. What characterizes this window? Try to imagine
what it can be used for!

4. Go back to the Matlab workspace. Choose your favorite window from the GUI and use it with
Welch’s method for spectral estimation (averaging modified periodograms with data windowing).
In Matlab, this is called pwelch. Compare the result with what you got from ”pure” periodogram
averaging.

Task 3: Blackman-Tukey’s Method

In this task you will have to do some Matlab-programming yourself. The task is to implement Blackman-
Tukey’s method, also known as Periodogram smoothing. Although a frequency-domain implementation
may be more efficient from a computational point of view, you will here implement the method in the
time domain. Recall the definition:

P̂BT (ejω) =
M∑

k=−M

wlag[k]r̂x[k]e−jω = DTFT{wlag[k]r̂x[k]} ,

1Generally, the typewriter font is used for Matlab commands in this document.

Spectral Analysis and Optimal Filtering, MVE 135 3

where wlag[k] is the covariance window of size 2M + 1, M ≤ N , and r̂x[k] is the sample autocorrelation
function,

r̂x[k] =
1
N

N−1∑

n=k

x[n]x[n− k] .

Thus, the steps are: 1) generate the window function, 2) compute the sample autocorrelation function,
and 3) compute the FFT of the product between the two.

1. Write a Matlab function:
PBT = btmethod(x, M);

that takes the data x and the window size M as inputs, and delivers the BT spectral estimate as
output. For step 1), use the hamming window, and in step 2) you could use the xcorr command
(which generates correlations for lags k = −N + 1 to k = N − 1). Include the code for the BT
function in the report.

2. Test the code by estimating the spectrum for the same data as in Task 1. Choose a ”suitable”
window size (what dictates this choice?). Plot the estimated spectrum and compare to the results
using Bartlett’s method.

Task 4: Parametric AR Modeling

In this task you will test how to use Matlab’s built in command pyulear to estimate the spectrum.
This function computes estimates of the AR parameters by solving the Yule-Walker equations, using
the sample autocorrelations. The spectrum is then formed from the estimated AR coefficients and noise
variance.

1. Apply the pyulear with correct model order (since the true data is an AR process in this case).
Compare the results with that using non-parametric methods.

2. Try AR modeling with incorrect model orders. What happens when the order is too low? Too
high?

Task 5: ARMA Model

Now it is time to try a more challenging data set. Generate a set of N = 8192 samples from the ARMA
process:

x[n]− 0.24x[n− 1] + 0.08x[n− 2]− 0.37x[n− 3] + 0.52x[n− 4] = e[n] + 0.56e[n− 1] + 0.81e[n− 2] ,

where e[n] is N(0, 1) white noise.

1. Plot the true spectrum, again using linear scales.

2. Estimate the spectrum using the BT method. Try to find the ”best” window size. Plot the estimate
and the true spectrum in the same plot. You may also try different window shapes. Which part of
the spectrum is most difficult to estimate?

3. Now, try AR modeling using the pyulear command. Try to find the ”best” choice of model order.
Compare the results with that using the BT method. Comments?

3 Optimal Filters

A common situation in signal processing is that one has a certain desired signal d[n] which is not observ-
able. Instead, another measured signal x[n] is used to recover d[n]. In the case of an FIR Wiener filter,
the signal estimate is:

d̂[n] = h[n] ∗ x[n] =
p−1∑

k=0

h[k]x[n− k] ,

Spectral Analysis and Optimal Filtering, MVE 135 4

where p is the number of filter coefficients h[k]. In the Wiener filter, the h[k] are selected to minimize
the MSE:

E{(d[n]− d̂[n])2} .

Since d̂[n] is linear in the data, we call it the LMMSE (Linear Minimum Mean Square Error) estimate of
d[n]. The optimal filter coefficients are found by solving the Wiener-Hopf (W-H) equations. For the case
of an FIR filter, the W-H equations are given by

rx[0] rx[1] · · · rx[p− 1]
rx[1] rx[0] · · · rx[p− 2]

...
...

. . .
...

rx[p− 1] rx[p− 2] · · · rx[0]

h[0]
h[1]

...
h[p− 1]

 =

rdx[0]
rdx[1]

...
rdx[p− 1]

 ,

where rx[k] is the autocorrelation function of x[n] and rdx[k] is the cross-correlation. We can express the
W-H equations compactly as Rxh = rdx, and the solution is given by

h = Rx\rdx
(in Matlab notation). This is the same as R−1

x rdx, but Matlab implements the ”backslash” in a more
computationally and numerically efficient way. The minimum MSE is given by

E{(d[n]− d̂[n])2} = rd[0]−
p−1∑

k=0

rdx[k]h[k] = rd[0]− rT
dxh .

Once the optimal filter has been found, the signal estimate is

d̂[n] =
p−1∑

k=0

h[k]x[n− k] = h[n] ∗ x[n] .

Task 6: The FIR Wiener Filter

In this task, we will consider the ”filtering” problem, in which the desired signal is corrupted by additive
noise:

x[n] = d[n] + w[n] .

The desired signal d[n] and the disturbance w[n] are uncorrelated, and they are both modeled as filtered
white noises:

d[n] = ed[n] + 0.8ed[n− 1] + 0.2ed[n− 2] (MA− process)
w[n] = −0.94w[n− 1]− 0.64w[n− 2] + ew[n] (AR− process)

Here, ed[n] and ew[n] are uncorrelated white noises, with zero mean and variances σ2
ed = 1 and σ2

ew = 0.5
respectively. In the simulation, both will be generated as Gaussian processes.

1. (Theoretical task) Determine the autocorrelation functions for d[n], w[n] and x[n] respectively.

2. Plot the spectra of the desired signal d[n] and the disturbance w[n] in the same plot.

3. Compute the optimal filter coefficients for FIR filters of length p = {1, 2, 5} and p = 20 respectively
(p = 20 is assumed to be close enough to ∞ in this case, so this should be a good approximation
of the causal IIR filter). When forming the autocorrelation matrix Rx, you may find the toeplitz
command useful. Solve the W-H equations using the backslash command in Matlab. Plot the
frequency responses of the different filters. Do they look as you expected, after seeing the spectra
of the desired signal and the interference?

4. Generate N = 200 samples of the two driving noise processes ed[n] and ew[n]. Use the randn
command, and scale with the standard deviations. Then generate the signals d[n], w[n] and x[n]
according to their respective model. Plot the last 50 samples of d[n] and x[n]. The task is now to
filter x[n] in order to recover d[n].

Spectral Analysis and Optimal Filtering, MVE 135 5

5. Compute the theoretical MSEs for the different filters. What is a good choice of filter length in this
case? Then apply the filters to the signal x[n] you generated in the previous task. Then compute the
error signals ep[n] = d[n]− d̂p[n], with p = {1, 2, 5, 20}. Find the empirical error powers (discarding
the first 20 samples) and compare with the theoretical results. Also plot the last 50 samples of the
various error signals in the same plot.

6. (Voluntary task) Suppose in reality we do not know of any models for the various signals. Instead
we might have access to a ”training data set”, {x̃[n], d̃[n]}K−1

n=0 , which is different from the true
signals, but has the same statistical properties. How could we use the training data to construct
an approximate Wiener filter? Feel free to try the idea on your simulated data, and compare the
result to the optimal filter!

References

[1] M. Viberg, “Complement on Digital Spectral Analysis and Optimal Filtering”, Course notes for MVE
135, Sept. 2007.

