RANDOM PROCESSES WITH APPLICATIONS 2007

Solution to Optional home work 2
Day assigned: September 30

Assignment deadline: 11:45 am, October 12

Moved deadline: 11:45 am, October 19

Problem 1. Consider two random variables defined as linear combinations of
other random variables,

Y:zn:ai)/i, Z:iij]
1 1

a) Show that

Cov(Y, Z) = ZZaibjC’ov(Yi, Z;)(1)

? J

(1)
Next, let X, X, ... X, be independent observations on the random variable
X ~ N(u, 0?). Consider the sample mean and variance

1

b) Use a) to show that the sample mean i and X; — i are uncorrelated,
1=1,2, ..., n. (1)

c¢) Use (b) to show that the sample mean and the sample variance are inde-
pendent. (1)



Solution

a)
Cov(Y, Z) ZaZYZbZ E|> aYi|E|> bz
1 1
Z Z a;b; E[Y;Z;] — Z a; E[Y}] Z b EZ;]
11 1 1
SN abENZ] =Y Y abEYE[Z
11 11
>N aib [EYiZ)] - EWVEIZ]] =) ) aibCov(Yi, Z)).
11 11
(1)
b)
Covli, Xi — i) = BIa(X; — )] — E[A)ELX; — ]
= E[i(X; — p)] = E[pXi] — E[i*] =0,
since from
it follows
Ly g pLS x| = B
n < n < !
(1)
¢) It follows from b) that i and (X; — j1)? are independent, implying that also
f and s* are independent. (1)

Problem 2. Consider the rectangular pulse function ¢(t) = u(t) — u(t — 1) and
the random variable 7" ~ U(0, 1). Define the random process

Y() = gt —T)

a) Find the CDF of Y(¢). (1)



b) Find the mean function uy (t). (1)

c¢) Find the autocovariance function Cyy (t1, t2). (1)

Solution

a) The possible values of Y (¢) are 0 and 1.
PYt)=1)=P0<t-T<1)=Pt—-1<T<t)

Since T' ~ U(0, 1), the above probability equals zero when ¢t < 0 or t > 2.

0<t<1: PYt)y=1)=Pt-1<T<t)=P(T <t)=t.

1<t<2: PY(t)=1)Pt—-1<T<t)=Pt—-1<T)=2—1t

0, t<0
t, 0<t<1
2—t, 1<t<2
0, t>2

b) Py(t) is a Bernoulli random variable, thus

my(t) = P(Y(t) = 1)
Var(Y(t)) = P(Y(t) = 1)(1 - P(Y(t) = 1))

¢) Fix t; < ty. We know that

Cy(t1,t2) = E[Y (t1)Y (t2)] — my (t1)my (t2)

Both terms above equal zero, when t; < 0 or t, > 2. Hence we have to
consider 0 < t; < ty < 2.



EY(t)Y (t2)] = P(Y(t1) =1, Y(t2) = 1)
:P(t1—1§T<t1, t2—1§T<t2)

From the above we find that

0<ti <ty <1:
P(t1—1§T<t1,t2—1§T<t2)
P(t1—1§T<t1,t2—1§T<t2):P(T<t1):t1

0<t1 <1, 1<ty<2, to—1<ty:
P(t1—1§T<t1, t2—1§T<t2)
:P(t2—1<T<t1):t1—t2+1

O<t1§1, 1<t €2, to—1>1:
P(t1—1§T<t1, t2—1§T<t2):0

Lty <ty<2:
P(t1—1§T<t1, t2—1§T<t2)
:P(t2—1<T):2—t2

We have then

t1, 0<t; <ty <1
. t—t2+1, O<t1§1,1<t2§1+t1,
E[Y(tl)y(tQ)] - O, O0<t; < ]_, 1+t <ty SZ,
2 —to, 1<t <ty <2
tl(l—tg), 0<t1<t2§1
C(t t)_ t—t2+1—t1(2—t2),O<t1§1,1<t2§1+t1,
YL RITY (2 - ty), 0<t; <1, 14+t <ty <2,
(Q—tg)(tl—]_), 1<t <ty <2

(1)



Problem 3. Let X (¢) be a white sense stationary random process with px(t) =0
that is ergodic in the mean and the autocorrelation, and let Y (¢) = ZX (t), where
Z is a random variable with expected value zero which is independent of X(¢).
Answer and explain:

a) Is the process Y (t) ergodic in mean? (1)
b) Is it ergodic in autocorrelation? (1)
Solution

1t
(Y(t)>—tlirgoﬁ/ Y( dt_tlggoﬁ/ X t

— (ZX(1)) = Z(X (1)) = Zmy

EY ()] = E[ZX(1)] = E[Z]mx

Since pux = 0, the process is ergodic in mean. (1)
b)
T
(Y(t)Y (t2)) = lim [ (Z°X(t1)X(t2)) = Z*(X(t1) X (t2)) = Z*Rxx(t1, t2)
—oo [ o1

BlY (t)Y (t2)] = E[Z°X (1) X (t2)] = E[Z°| Rxx (1, 12)

If Z is non-degenerate the process is not ergodic in autocorrelation. (1)

Problem 4. A shot noise process with random amplitude is defined by

e}

X(t) = A(t -3y,

1

where the S; are the points of occurrences of a Poisson process N(t) of rate A,
and A; are iid random variables independent of N (t).

a) Compute px(t). (2)

b) Compute Cxx/(t1, ta). (2)



Solution

a) Denote by N(t) the Poisson process involved and let A be the rate of the
process. Also, let E[A;] =a, FE[A?] =b% We have

=a) E[(t—Xy)] =aE

b) Using the approach presented in the book, p. 308, we compute

Rxx(t1,t2) = E[X (1) X (t2)]

X(t) =~ ZAnVnh(t —nA), V, ~ Bernoulli(\A)
1
E | AVuh(ty —nA) Y AyVih(ts — mA)
0 0

=3 E[AAEV, Vil h(t — nA)h(ty —mA) =D "3 "+ Y

n=0 m=0 m#n

= i h(ty = nA)h(ty = nA)AA+a® Y > " h(ty = nA)h(t — mA)(AA)?

m#n



When A — 0, the first term approaches

bQ)\/ h(t, — u)h(ty — u)du
0

The second term can be written as

a’ i i h(t; —nA)h(ty — mA)(AA)? — a? i h(t; —nA)h(t; —nA)(AA)?

When A — 0, for the first term above we have

a’ i i h(ty — nA)h(ty — mA)(AA)?

n=0 m=0

=a®X*) " h(ty = nA)AD " h(ty = mA)A

n=0 m=0

— a2)\2/ h(t —u)du/ h(ty — u)du
0 0

x| " hu)du / * h(u)du = o ()x (12)

and for the second term
a® ) " h(ty — nA)h(ty — nA)(AA)
n=0
= a®XN’A) " h(t; — nA)h(ty — n)A — 0

n=0
Thus

Rxx(ty,t2) = 52)\/000 h(ty — u)h(ty — u)du + px(t)px(t2)

Problem 5. Consider the second order autoregressive process defined by

3 1
Yn = _Ynf - _Ynf Wna
gl Tt

where W, is the zero mean white noise process.

7



a) Show that the unit impulse response of the linear system producing Y is
1\" 1\"
m=2(5) - (5) n=0
2 1) "=

b) Find the transfer function of the system.

~—~~
—_ =
e

c) Find the PSD of the process and its autocorrelation function. (1)

Solution

a) The process Y is obtained by passing the white noise process W through a
filter T. The unit impulse response function of T, hT satisfies

3 1
hz; - th—l o th_Q +0,, n=0, £1, £2,....

Substituting h,, above we see that the equations are satisfied for
n=0, +1, £2,..... Hence hl = h,,. (1)

Below we use standard techniques for computing the unit impulse response
function of a system producing an autoregressive process from the white

noise process.
3 1
Y,—-Y, 1+=Y, =W,
PRt

Taking Z-transform from both sides we obtain

3 1
Zy(z)<1 — szl + gz’2> Zw(z), z>1
1
Zy(z) = 1— 32714 1p2 Zw(2)



Thus the Z-transform of the filter h producing Y from W is then
1

_3,-14 1,2
1 2t 32

Zh(Z) =

1 2 1
(1—21/2)Q—21/4) 1—21/2 1-—z21/4

=3 () -2 () =X k() - ()] =

1 1
—le=imf 1~ Le—jang

1
T (= Le (1= Leanfy

c) Recall that
Sy(f) = [H(f)]"ow

We compute

1 1
_1+i—00527rf'1+1—16—%C0527rf

[H(f)I

_8[ 2 1
7l t—cos2rf 14+ —lcos2nfl

For |a| < 1, the series {a/*}>_ has a Fourier transform given by

|&| = —_
]-‘({a }) (f) = 1+ a? —2acos 2 f



Hence

g = U2 ),
T ey = P U0 ()
and then
|H(f)]” = %f ({/2)y) (f) + %i? ({(1/4)5}) ()
Thus
S (1) = SF(L/2M) (1) + e F ({a/)4)) ()] o
and

v~ () R0 T

(1)

Below we compute Ry (k) by help of standard techniques. For convenience, denote
R(k) = Ry (k).

b Yn:%Yn—l_%Yn—2+Wn

Multiply both sides by Y,,_x to get

3 1
Ynfk Yn = Z Ynfk Ynfl - g Ynfk Yn72 + Ynfk Wn

10



and take expectation of both sides.

R(k) = Z R(k—1) — % R(k— 2) + E[Y, W,

k=0: R(0)= %R(l) — %R(Z) + o5y

k=1: R(1)= ZR(O) LRy (v, amd W, are uncorrelated)
E=2: R(2)=>R(1)- S RO)

k>2 R(k):%R(k—l)—%R(k—Q)

true for k > 2

e We first find R(0) and R(1) from the first two equations, substituting there
R(2) by 3/4R(1) — 1/8R(0).

R(0) = gR(l) - %[%R(l) - SRO)] + o
R(1) = 23(0) ~Lrpy
63 21 ,
SR(0) - SR(1) = ofy
3 9
“R(0) = <R(1) =0
Put r; = igi), 1=0,1

11



‘ 63ro — 42R; = 64

67"0—9R1:O
64 —42
dEt[() 9 ‘l —64-9 576 [576
T = = = = | —
0 63 —42 —63-9+6-42  —315 |315
det
6 —9
63 64
. det[ 6 0 }  [3s4
T —315 ~ 1315

576 384
R(0) = —o?2 1) = —¢?
(0) = 350w B) = 37z0w

e Next we compute R(k), k > 2. As we saw, the series R(k) obey the recurrent
equations

called second-order difference equations. The characteristic polynomial of the
system is

3 1
P k k—1 k72‘

We need to find the non-zero roots of this polynomial, i.e., the non-zero Roth’s

3 1
of \? — Z)\ + 3 Easy to see that these Roth’s are

12



All solutions of the system of difference equations have the form
1\ 1\
R =a(3) +4(7) |-
(k)=alz) +8(3

where o and [ are some constants. We have already computed R(0) and R(1),
thus we must have

a 3
Ek=1: —+2=R1
This gives
-1
HEERES
B R(1
B 5 1 (1)
576
B 1 { 1/4 —1} 315
- Lo L1201 ] 3y
det { 1/2 1/4} 3w
_ (—4)o}, [ 144 — 384
315 —288 4 384
64
4o, { —240 ] B 21
— o | =
315 + %02
105 W
and hence

64 1\IK 128 1N\ |

13



