RANDOM PROCESSES WITH APPLICATIONS 2007

Solution to Optional home work 2

Day assigned: September 30

Assignment deadline: 11:45 am, October 12

Moved deadline: 11:45 am, October 19

Problem 1. Consider two random variables defined as linear combinations of other random variables,

$$Y = \sum_{1}^{n} a_i Y_i, \quad Z = \sum_{1}^{m} b_j Z_j$$

.

a) Show that

$$Cov(Y, Z) = \sum_{i} \sum_{j} a_i b_j Cov(Y_i, Z_j)(1)$$
(1)

Next, let $X_1, X_2, ... X_n$ be independent observations on the random variable $X \sim N(\mu, \sigma^2)$. Consider the sample mean and variance

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{\mu})^2.$$

- b) Use a) to show that the sample mean $\hat{\mu}$ and $X_i \hat{\mu}$ are uncorrelated, $i=1,\,2,\,...,\,n.$
- c) Use (b) to show that the sample mean and the sample variance are independent. (1)

Solution

$$Cov(Y, Z) = E\left[\sum_{1}^{n} a_{i}Y_{i} \sum_{1}^{m} b_{j}Z_{j}\right] - E\left[\sum_{1}^{n} a_{i}Y_{i}\right] E\left[\sum_{1}^{m} b_{j}Z_{j}\right]$$

$$\sum_{1}^{n} \sum_{1}^{m} a_{i}b_{j}E[Y_{i}Z_{j}] - \sum_{1}^{n} a_{i}E[Y_{i}] \sum_{1}^{m} b_{j}E[Z_{j}]$$

$$\sum_{1}^{n} \sum_{1}^{m} a_{i}b_{j}E[Y_{i}Z_{j}] - \sum_{1}^{n} \sum_{1}^{m} a_{i}b_{j}E[Y_{i}]E[Z_{j}]$$

$$\sum_{1}^{n} \sum_{1}^{m} a_{i}b_{j} [E[Y_{i}Z_{j}] - E[Y_{i}]E[Z_{j}]] = \sum_{1}^{n} \sum_{1}^{m} a_{i}b_{j}Cov(Y_{i}, Z_{j}).$$
(1)

b)

$$Cov(\hat{\mu}, X_i - \hat{\mu}) = E[\hat{\mu}(X_i - \hat{\mu})] - E[\hat{\mu}]E[X_i - \hat{\mu}]$$

= $E[\hat{\mu}(X_i - \hat{\mu})] = E[\hat{\mu}X_i] - E[\hat{\mu}^2] = 0,$

since from

$$E[\hat{\mu}X_i] = E[\hat{\mu}X_j],$$

it follows

$$E[\hat{\mu}X_i] = \frac{1}{n} \sum_{i=1}^{n} E[\hat{\mu}X_j] = E\left[\hat{\mu}\frac{1}{n} \sum_{i=1}^{n} X_j\right] = E[\hat{\mu}^2]$$
(1)

c) It follows from b) that $\hat{\mu}$ and $(X_i - \hat{\mu})^2$ are independent, implying that also $\hat{\mu}$ and s^2 are independent. (1)

Problem 2. Consider the rectangular pulse function g(t) = u(t) - u(t-1) and the random variable $T \sim U(0, 1)$. Define the random process

$$Y(t) = g(t - T)$$

a) Find the CDF of Y(t). (1)

b) Find the mean function $\mu_Y(t)$. (1)

c) Find the autocovariance function
$$C_{YY}(t_1, t_2)$$
. (1)

Solution

a) The possible values of Y(t) are 0 and 1.

$$P(Y(t) = 1) = P(0 \le t - T \le 1) = P(t - 1 \le T \le t)$$

Since $T \sim U(0,1)$, the above probability equals zero when $t \leq 0$ or $t \geq 2$.

$$0 < t \le 1: \qquad P(Y(t) = 1) = P(t - 1 < T < t) = P(T < t) = t.$$

$$1 < t < 2$$
: $P(Y(t) = 1)P(t - 1 < T < t) = P(t - 1 < T) = 2 - t$

$$P(Y(t) = 1) = \begin{cases} 0, & t < 0 \\ t, & 0 < t \le 1 \\ 2 - t, & 1 < t \le 2 \\ 0, & t > 2 \end{cases}$$
 (1)

b) $P_Y(t)$ is a Bernoulli random variable, thus

$$m_Y(t) = P(Y(t) = 1)$$

$$Var(Y(t)) = P(Y(t) = 1)(1 - P(Y(t) = 1))$$
(1)

c) Fix $t_1 < t_2$. We know that

$$C_Y(t_1, t_2) = E[Y(t_1)Y(t_2)] - m_Y(t_1)m_Y(t_2)$$

Both terms above equal zero, when $t_1 \leq 0$ or $t_2 \geq 2$. Hence we have to consider $0 < t_1 < t_2 < 2$.

$$E[Y(t_1)Y(t_2)] = P(Y(t_1) = 1, Y(t_2) = 1)$$

= $P(t_1 - 1 \le T < t_1, t_2 - 1 \le T < t_2)$

From the above we find that

$$0 < t_1 \le 1, \quad 1 < t_2 \le 2, \quad t_2 - 1 < t_1 :$$

$$P(t_1 - 1 \le T < t_1, \ t_2 - 1 \le T < t_2)$$

$$= P(t_2 - 1 < T < t_1) = t_1 - t_2 + 1$$

$$\frac{0 < t_1 \le 1, \quad 1 < t_2 \le 2, \quad t_2 - 1 > t_1 :}{P(t_1 - 1 \le T < t_1, \ t_2 - 1 \le T < t_2) = 0}$$

$$\frac{1 < t_1 < t_2 \le 2:}{P(t_1 - 1 \le T < t_1, \ t_2 - 1 \le T < t_2)}$$
$$= P(t_2 - 1 < T) = 2 - t_2$$

We have then

$$E[Y(t_1)Y(t_2)] = \begin{cases} t_1, & 0 < t_1 < t_2 \le 1 \\ t - t_2 + 1, & 0 < t_1 \le 1, \ 1 < t_2 \le 1 + t_1, \\ 0, & 0 < t_1 \le 1, \ 1 + t_1 < t_2 \le 2, \\ 2 - t_2, & 1 < t_1 < t_2 \le 2 \end{cases}$$

$$C_Y(t_1, t_2) = \begin{cases} t_1(1 - t_2), & 0 < t_1 < t_2 \le 1 \\ t - t_2 + 1 - t_1(2 - t_2), & 0 < t_1 \le 1, 1 < t_2 \le 1 + t_1, \\ -t_1(2 - t_1), & 0 < t_1 \le 1, 1 + t_1 < t_2 \le 2, \\ (2 - t_2)(t_1 - 1), & 1 < t_1 < t_2 \le 2 \end{cases}$$

(1)

Problem 3. Let X(t) be a white sense stationary random process with $\mu_X(t) = 0$ that is ergodic in the mean and the autocorrelation, and let Y(t) = ZX(t), where Z is a random variable with expected value zero which is independent of X(t). Answer and explain:

a) Is the process
$$Y(t)$$
 ergodic in mean? (1)

Solution

a)

$$\langle Y(t) \rangle = \lim_{t \to \infty} \frac{1}{2T} \int_{-T}^{T} Y(t)dt = \lim_{t \to \infty} \frac{Z}{2T} \int_{-T}^{T} X(t)dt$$
$$= \langle ZX(t) \rangle = Z\langle X(t) \rangle = Zm_X$$

$$E[Y(t)] = E[ZX(t)] = E[Z]m_X$$

(1)

Since $\mu_X = 0$, the process is ergodic in mean.

b)

$$\langle Y(t_1)Y(t_2)\rangle = \lim_{t \to \infty} \int_{-T}^{T} \langle Z^2 X(t_1)X(t_2)\rangle = Z^2 \langle X(t_1)X(t_2)\rangle = Z^2 R_{XX}(t_1, t_2)$$
$$E[Y(t_1)Y(t_2)] = E[Z^2 X(t_1)X(t_2)] = E[Z^2]R_{XX}(t_1, t_2)$$

If Z is non-degenerate the process is not ergodic in autocorrelation. (1)

Problem 4. A shot noise process with random amplitude is defined by

$$X(t) = \sum_{1}^{\infty} A_i h(t - S_i),$$

where the S_i are the points of occurrences of a Poisson process N(t) of rate λ , and A_i are iid random variables independent of N(t).

a) Compute
$$\mu_X(t)$$
. (2)

b) Compute
$$C_{XX}(t_1, t_2)$$
. (2)

a) Denote by N(t) the Poisson process involved and let λ be the rate of the process. Also, let $E[A_i] = a$, $E[A_i^2] = b^2$. We have

$$\mu(t) = E[X(t)] = E[E[X(t)|N(t)]]$$

$$E[X(t)|N(t) = n] = E\left[\sum_{1}^{\infty} A_i h(t - S_i)|N(t) = n\right]$$

$$E\left[\sum_{1}^{n} A_i h(t - S_i)|N(t) = n\right] = E\left[\sum_{1}^{n} A_i h(t - X_{(i)})\right]$$

$$= a\sum_{1}^{n} E[h(t - X_{(i)})] = aE\left[\sum_{1}^{n} h(t - X_{(i)})\right]$$

$$= aE\left[\sum_{1}^{n} h(t - X_i)\right] = mn\frac{1}{t} \int_{o}^{t} h(t - u)du$$

$$E[X(t)|N(t)] = aN(t)\frac{1}{t} \int_{o}^{t} h(t - u)du$$

$$\mu(t) = \int_{o}^{t} h(t - u)du = a\lambda \int_{o}^{t} h(u)du$$
(2)

b) Using the approach presented in the book, p. 308, we compute

$$R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)]$$

$$X(t) \approx \sum_{1}^{\infty} A_{n} V_{n} h(t - n\Delta), \quad V_{n} \sim Bernoulli(\lambda \Delta)$$

$$E\left[\sum_{0}^{\infty} A_{n} V_{n} h(t_{1} - n\Delta) \sum_{0}^{\infty} A_{m} V_{m} h(t_{2} - m\Delta)\right]$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E[A_{n} A_{m}] E[V_{n} V_{m}] h(t_{1} - n\Delta) h(t_{2} - m\Delta) = \sum_{m=n}^{\infty} \sum_{m=n}^{\infty} + \sum_{m \neq n}^{\infty} h(t_{1} - n\Delta) h(t_{2} - n\Delta) \lambda \Delta + a^{2} \sum_{m \neq n}^{\infty} h(t_{1} - n\Delta) h(t_{2} - m\Delta) (\lambda \Delta)^{2}$$

When $\Delta \to 0$, the first term approaches

$$b^2 \lambda \int_0^\infty h(t_1 - u)h(t_2 - u)du$$

The second term can be written as

$$a^{2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h(t_{1} - n\Delta)h(t_{2} - m\Delta)(\lambda\Delta)^{2} - a^{2} \sum_{n=0}^{\infty} h(t_{1} - n\Delta)h(t_{2} - n\Delta)(\lambda\Delta)^{2}$$

When $\Delta \to 0$, for the first term above we have

$$a^{2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h(t_{1} - n\Delta)h(t_{2} - m\Delta)(\lambda\Delta)^{2}$$

$$= a^{2} \lambda^{2} \sum_{n=0}^{\infty} h(t_{1} - n\Delta)\Delta \sum_{m=0}^{\infty} h(t_{2} - m\Delta)\Delta$$

$$\longrightarrow a^{2} \lambda^{2} \int_{0}^{\infty} h(t_{1} - u)du \int_{0}^{\infty} h(t_{2} - u)du$$

$$= a^{2} \lambda^{2} \int_{0}^{t_{1}} h(u)du \int_{0}^{t_{2}} h(u)du = \mu_{X}(t_{1})\mu_{X}(t_{2})$$

and for the second term

$$a^{2} \sum_{n=0}^{\infty} h(t_{1} - n\Delta)h(t_{2} - n\Delta)(\lambda\Delta)^{2}$$

$$= a^{2} \lambda^{2} \Delta \sum_{n=0}^{\infty} h(t_{1} - n\Delta)h(t_{2} - n)\Delta \longrightarrow 0$$

Thus

$$R_{XX}(t_1, t_2) = b^2 \lambda \int_0^\infty h(t_1 - u)h(t_2 - u)du + \mu_X(t_1)\mu_X(t_2)$$

(2)

Problem 5. Consider the second order autoregressive process defined by

$$Y_n = \frac{3}{4}Y_{n-1} - \frac{1}{8}Y_{n-2} + W_n,$$

where W_n is the zero mean white noise process.

a) Show that the unit impulse response of the linear system producing Y is

$$h_n = 2\left(\frac{1}{2}\right)^n - \left(\frac{1}{4}\right)^n, \ n \ge 0.$$
 (1)

- b) Find the transfer function of the system. (1)
- c) Find the PSD of the process and its autocorrelation function. (1)

Solution

a) The process Y is obtained by passing the white noise process W through a filter T. The unit impulse response function of T, h^T satisfies

$$h_n^T = \frac{3}{4}h_{n-1}^T - \frac{1}{8}h_{n-2}^T + \delta_n, \quad n = 0, \pm 1, \pm 2, \dots$$

Substituting
$$h_n$$
 above we see that the equations are satisfied for $n = 0, \pm 1, \pm 2, \ldots$ Hence $h_n^T = h_n$. (1)

Below we use standard techniques for computing the unit impulse response function of a system producing an autoregressive process from the white noise process.

$$Y_n - \frac{3}{4}Y_{n-1} + \frac{1}{8}Y_{n-2} = W_n$$

Taking Z-transform from both sides we obtain

$$Z_Y(z)\left(1-\frac{3}{4}z^{-1}+\frac{1}{8}z^{-2}\right)Z_W(z), \ z>1$$

$$Z_Y(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} Z_W(z)$$

Thus the Z-transform of the filter h producing Y from W is then

$$Z_h(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$$

$$= \frac{1}{(1 - z^{-1}/2)(1 - z^{-1}/4)} = \frac{2}{1 - z^{-1}/2} - \frac{1}{1 - z^{-1}/4}$$

$$= 2\sum_0^\infty \left(\frac{z^{-1}}{2}\right)^k - \sum_0^\infty \left(\frac{z^{-1}}{4}\right)^k = \sum_0^\infty \left[2\left(\frac{1}{2}\right)^k - \left(\frac{1}{4}\right)^k\right]z^{-k} = \sum_0^\infty h_k z^{-k}$$
Thus
$$h_k = 2\left(\frac{1}{2}\right)^k - \left(\frac{1}{4}\right)^k, \ k \ge 0$$

b)

$$H(f) = \sum_{0}^{\infty} \left(2\left(\frac{1}{2}\right)^k - \left(\frac{1}{4}\right)^k \right) e^{-j2\pi fk}$$

$$= 2\frac{1}{1 - \frac{1}{2}e^{-j2\pi f}} - \frac{1}{1 - \frac{1}{4}e^{-j2\pi f}}$$

$$= \frac{1}{(1 - \frac{1}{2}e^{-j2\pi f})(1 - \frac{1}{4}e^{-j2\pi f})}.$$

(1)

c) Recall that

$$S_Y(f) = |H(f)|^2 \sigma_W^2$$

We compute

$$|H(f)|^2 = \frac{1}{1 + \frac{1}{4} - \cos 2\pi f} \cdot \frac{1}{1 + \frac{1}{16} - \frac{1}{2}\cos 2\pi f}$$
$$= \frac{8}{7} \left[\frac{2}{1 + \frac{1}{4} - \cos 2\pi f} - \frac{1}{1 + \frac{1}{16} - \frac{1}{2}\cos 2\pi f} \right].$$

For $|\alpha| < 1$, the series $\{\alpha^{|k|}\}_{-\infty}^{\infty}$ has a Fourier transform given by

$$\mathcal{F}\left(\left\{\alpha^{|k|}\right\}\right)(f) = \frac{1 - \alpha^2}{1 + \alpha^2 - 2\alpha\cos 2\pi f}.$$

Hence

$$\frac{3/4}{1 + \frac{1}{4} - \cos 2\pi f} = \mathcal{F}\left(\left\{(1/2)^{|k|}\right\}\right)(f),$$
$$\frac{15/16}{1 + \frac{1}{16} - \frac{1}{2}\cos 2\pi f} = \mathcal{F}\left(\left\{(1/4)^{|k|}\right\}\right)(f),$$

and then

$$|H(f)|^2 = \frac{64}{21} \mathcal{F}\left(\left\{(1/2)^{|k|}\right\}\right)(f) + \frac{128}{135} \mathcal{F}\left(\left\{(1/4)^{|k|}\right\}\right)(f)$$

Thus

$$S_Y(f) = \frac{64}{21} \left[\mathcal{F} \left(\{ (1/2)^{|k|} \} \right) (f) + \frac{128}{135} \mathcal{F} \left(\{ (1/4)^{|k|} \} \right) (f) \right] \sigma_W^2$$

and

$$R_Y(k) = \left[\frac{64}{21} \left(\frac{1}{2}\right)^{|k|} - \frac{128}{105} \left(\frac{1}{4}\right)^{|k|}\right] \sigma_W^2$$
(1)

Below we compute $R_Y(k)$ by help of standard techniques. For convenience, denote $R(k) = R_Y(k)$.

•
$$Y_n = \frac{3}{4} Y_{n-1} - \frac{1}{8} Y_{n-2} + W_n$$

Multiply both sides by Y_{n-k} to get

$$Y_{n-k} Y_n = \frac{3}{4} Y_{n-k} Y_{n-1} - \frac{1}{8} Y_{n-k} Y_{n-2} + Y_{n-k} W_n$$

and take expectation of both sides.

$$R(k) = \frac{3}{4}R(k-1) - \frac{1}{8}R(k-2) + E[Y_{n-k}W_n]$$

$$\underline{k = 0}: \quad R(0) = \frac{3}{4}R(1) - \frac{1}{8}R(2) + \sigma_W^2$$

$$\underline{k = 1}: \quad R(1) = \frac{3}{4}R(0) - \frac{1}{8}R(1) \qquad (Y_{n-1} \quad \text{and} \quad W_n \quad \text{are uncorrelated})$$

$$\underline{k = 2}: \quad R(2) = \frac{3}{4}R(1) - \frac{1}{8}R(0)$$

$$\underline{k > 2}: \quad R(k) = \frac{3}{4}R(k-1) - \frac{1}{8}R(k-2)$$

• We first find R(0) and R(1) from the first two equations, substituting there R(2) by 3/4R(1) - 1/8R(0).

$$R(0) = \frac{3}{4}R(1) - \frac{1}{8}\left[\frac{3}{4}R(1) - \frac{1}{8}R(0)\right] + \sigma_W^2$$

$$R(1) = \frac{3}{4}R(0) - \frac{1}{8}R(1)$$

$$\frac{63}{64}R(0) - \frac{21}{32}R(1) = \sigma_W^2$$

$$\frac{3}{4}R(0) - \frac{9}{8}R(1) = 0$$

Put
$$r_i = \frac{R(i)}{\sigma_W^2}$$
, $i = 0, 1$

$$\begin{vmatrix} 63r_0 - 42R_1 = 64 \\ 6r_0 - 9R_1 = 0 \end{vmatrix}$$

$$r_0 = \frac{\det \begin{bmatrix} 64 & -42 \\ 0 & -9 \end{bmatrix}}{\det \begin{bmatrix} 63 & -42 \\ 6 & -9 \end{bmatrix}} = \frac{-64 \cdot 9}{-63 \cdot 9 + 6 \cdot 42} = \frac{-576}{-315} = \boxed{\frac{576}{315}}$$

$$R_1 = \frac{\det \begin{bmatrix} 63 & 64 \\ 6 & 0 \end{bmatrix}}{-315} = \boxed{\frac{384}{315}}$$

$$R(0) = \frac{576}{315}\sigma_W^2, \quad R(1) = \frac{384}{315}\sigma_W^2$$

• Next we compute R(k), $k \ge 2$. As we saw, the series R(k) obey the recurrent equations

$$R(k) - \frac{3}{4}R(k-1) - \frac{1}{8}R(k-2) = 0, \ k \ge 2,$$

called second-order difference equations. The characteristic polynomial of the system is

$$P(\lambda) = \lambda^k - \frac{3}{4} \lambda^{k-1} + \frac{1}{8} \lambda^{k-2}.$$

We need to find the non-zero roots of this polynomial, i.e., the non-zero Roth's of $\lambda^2 - \frac{3}{4}\lambda + \frac{1}{8}$. Easy to see that these Roth's are

$$\lambda_1 = \frac{1}{2}, \quad \lambda_2 = \frac{1}{4}$$

.

All solutions of the system of difference equations have the form

$$R(k) = \alpha \left(\frac{1}{2}\right)^k + \beta \left(\frac{1}{4}\right)^k ,$$

where α and β are some constants. We have already computed R(0) and R(1), thus we must have

$$k=0: \alpha+\beta=R(0),$$

$$k = 1: \frac{\alpha}{2} + \frac{\beta}{4} = R(1).$$

This gives

$$\left[\begin{array}{c} \alpha \\ \beta \end{array}\right] = \left[\begin{array}{cc} 1 & 1 \\ \frac{1}{2} & \frac{1}{4} \end{array}\right]^{-1} \left[\begin{array}{c} R(0) \\ R(1) \end{array}\right]$$

$$= \frac{1}{\det \begin{bmatrix} 1 & 1 \\ 1/2 & 1/4 \end{bmatrix}} \begin{bmatrix} 1/4 & -1 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} \frac{576}{315} \sigma_W^2 \\ \frac{384}{315} \sigma_W^2 \end{bmatrix}$$

$$= \frac{(-4)\sigma_W^2}{315} \left[\begin{array}{c} 144 - 384 \\ -288 + 384 \end{array} \right]$$

$$= \frac{-4\sigma_W^2}{315} \begin{bmatrix} -240 \\ +96 \end{bmatrix} = \begin{bmatrix} \frac{64}{21}\sigma_W^2 \\ -\frac{128}{105}\sigma_W^2 \end{bmatrix}$$

and hence

$$R(k) = \left[\frac{64}{21} \left(\frac{1}{2} \right)^{|k|} - \frac{128}{105} \left(\frac{1}{2} \right)^{|k|} \right] \sigma_W^2, \quad k = 0, \pm 1, \pm 2, \dots$$