Solution to the written test for examination in MVE135
Random processes with applications, 2007-10-25 Thursday, 14:00-18:00, V.

There are 30 total points in the examination. One needs 14 points for grade 3 (to pass), 18 points for grade 4 , and 24 points for grade 5.

Problem 1. The input X in a binary optical communication system is a random variable with equally likely values 1 and 2 . The receiver output Y is a Poisson random variable which parameter is μ, when 1 is transmitted, and ν when 2 is transmitted.
(a) Compute $E[Y \mid X]$ and $E[Y]$.
1.5p
(b) Given that the receiver output is equal to 2 , find the conditional probability that 1 was sent.

Solution

(a)

$$
E[Y \mid X=1]=\mu, \quad E[Y \mid X=2]=\nu, \quad E[Y]=E[E[Y \mid X]]=\frac{\mu}{2}+\frac{\nu}{2}
$$

(b)

$$
P(X=1 \mid Y=2)=\frac{P(Y=2 \mid X=1) P(X=1)}{P(Y=2)}=\frac{\frac{1}{2} \frac{\mu^{2}}{2} e^{-\mu}}{\frac{1}{2} \frac{\mu^{2}}{2} e^{-\mu}+\frac{1}{2} \frac{\nu^{2}}{2} e^{-\nu}}=\frac{\mu^{2} e^{-\mu}}{\mu^{2} e^{-\mu}+\nu^{2} e^{-\nu}}
$$

Problem 2. A multiplexer combines N digital television signals into a common transmission line. Signal n generates X_{n} bits every 33 milliseconds, where X_{n} is a Gaussian random variable with mean m / N and variance σ^{2} / \sqrt{N}. Suppose that the multiplexer accepts a maximum total of T bits from the combined sources every 33 ms , and that any bits in excess of T are discarded. Let the signals be independent and assume that $T=m+t \sigma$, where $t>0$ is a fixed number. Let $Y_{\text {Disc }}$ be the number of bits discarded per $33-\mathrm{ms}$ period, i.e.,

$$
Y_{D i s c}= \begin{cases}X-T, & X>T \\ 0, & X \leq T\end{cases}
$$

Compute $E\left[Y_{\text {Disc }}\right]$. What is the result when $t \rightarrow \infty$?

Solution Let $X=X_{1}+X_{2}+\ldots+X_{N}$ be the total number of bits generated by the combined source. X is a normal random variable with expected value m and variance $\sigma_{1}^{2}=\sqrt{N} \sigma^{2}$. Then $T=m+t_{1} \sigma_{1}^{2}$, where $t_{1}=t / \sqrt{N}$. We have

$$
Y_{D i c s}= \begin{cases}X-T, & \text { if } \quad X>T \\ 0, & \text { if } \quad X \leq T\end{cases}
$$

Thus

$$
\begin{aligned}
E\left[Y_{D i s c}\right] & =\int_{T}^{\infty}(x-T) f_{X}(x) d x \\
& =\int_{m+t_{1} \sigma_{1}}^{\infty} x f_{X}(x) d x-T P\left(X \geq m+t_{1} \sigma_{1}\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{t_{1}}^{\infty}\left(\sigma_{1} y+m\right) e^{-\frac{y^{2}}{2}} d y-\left(m+t_{1} \sigma_{1}\right) Q\left(t_{1}\right) \\
& =\frac{\sigma_{1}}{\sqrt{2 \pi}} e^{-\frac{t_{1}^{2}}{2}}-t_{1} \sigma_{1} Q\left(t_{1}\right)
\end{aligned}
$$

When $t \rightarrow \infty$ we obtain $E\left[Y_{\text {Dics }}\right] \rightarrow 0$, as expected.

Problem 3. Suppose Z_{1} and Z_{2} are independent standard normal random variables. Define $X_{1}=Z_{1}, \quad X_{2}=3 / 5 Z_{1}+4 / 5 Z_{2}$. Compute $f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)$, the conditional PDF of X_{2}, given $X_{1}=x_{1}$.

Solution The random variables Z_{1}, Z_{2} are jointly Gaussian, and so are X_{1}, X_{2}. We have $m_{X_{1}}=m_{X_{2}}=0, \sigma_{X_{1}}^{2}=\sigma_{X_{2}}^{2}=1, \rho_{X_{1}, X_{2}}=3 / 5$. Then

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sqrt{1-(3 / 5)^{2}}} \exp \left\{-\frac{1}{2} \frac{1}{1-(3 / 5)^{2}}\left[x_{1}^{2}+x_{2}^{2}-2 \frac{3}{5} x_{1} x_{2}\right]\right\}
$$

and

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{1}{\sqrt{2 \pi} 4 / 5} \exp \left\{-\frac{\left(x_{2}-\frac{3}{5} x_{1}\right)^{2}}{2 \cdot 16 / 25}\right\}
$$

Problem 4. Messages arrive in a multiplexer according to a Poisson process with mean $\lambda=10$ messages/second. Use the CLT to estimate the probability that more then 650 messages arrive in one minute.

Solution

$$
P\left(S_{650}<60\right)=P\left(\frac{S_{650}-605 / 10}{\sqrt{650} / 10}<\frac{60-650 / 10}{\sqrt{650} / 10}\right) \approx Q(1.96)=2.49 \times 10^{-2}
$$

Problem 5. Let X_{1}, X_{2}, \ldots be iid random variables with expected value m and variance σ^{2}, and consider the discrete time proces $\left\{Z_{n}, n \geq 1\right\}$ with

$$
Z_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

(a) Find the autocovariance function of Z_{n}.
(b) Why is this process Markovian? Suppose X_{1} is continuous with CDF $F(x)$ and PDF $f(x)$. Compute

$$
F_{Z_{n} \mid Z_{n-1}}\left(x \mid Z_{n-1}=y\right)=P\left(Z_{n} \leq x \mid Z_{n-1}=y\right) \quad \text { and } \quad f_{Z_{n} \mid Z_{n-1}}\left(x \mid Z_{n-1}=y\right)
$$

Solution

(a) Recall that the covariance function of the sum process $\left\{S_{n}, n \geq 1\right\}$ with $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ is $C_{S}(n, k)=\min (n, k) \sigma^{2}$. Then

$$
\begin{aligned}
C_{Z}(n, k) & =E\left[\left(Z_{n}-m\right)\left(Z_{k}-m\right)\right)=\frac{1}{n k} E\left[\left(S_{n}-n m\right)\left(S_{k}-k m\right)\right] \\
& =\frac{1}{n k} C_{S}(n, k)=\frac{1}{n k} \min (n, k) \sigma^{2}=\frac{\sigma^{2}}{\max (n, k)}
\end{aligned}
$$

(b) The process has independent increments and is then Markovian.

$$
\begin{gathered}
F_{Z_{n} \mid Z_{n-1}}\left(x \mid Z_{n-1}=y\right)=P\left(Z_{n} \leq x \mid Z_{n-1}=y\right)=P\left(n Z_{n} \leq n x \mid(n-1) Z_{n-1}=(n-1) y\right) \\
=P\left(X_{n} \leq n x-(n-1) y\right)=F_{X}(n x-(n-1) y) \\
f_{Z_{n} \mid Z_{n-1}}\left(x \mid Z_{n-1}=y\right)=n f_{X}(n x-(n-1) y)
\end{gathered}
$$

Problem 6. Consider the short term integration of $X(t)$

$$
Y(t)=\frac{1}{T} \int_{t-T}^{t} X(u) d u
$$

where $X(t)$ is the white noise process with $\operatorname{PSD} S_{X}(f)=N_{0} / 2$.
(a) Compute $S_{Y}(f)$, the PSD of $Y(t)$.
(b) Compute the average power of $Y(t)$.

Solution The impulse responce is
(a)

$$
h(t)=\frac{1}{T} \int_{t-T}^{t} \delta(x) d x=\frac{1}{T}\left[\int_{\infty}^{t} \delta(x) d x-\int_{\infty}^{t-T} \delta(x) d\right]=\frac{1}{T}[u(t)-u(t-T)]
$$

and the transfer functuion is then

$$
H(t)=\frac{1}{T} \int_{0}^{T} e^{-j 2 \pi f t} d t=\frac{1}{T} \frac{\sin \pi f T}{\pi f} e^{-j \pi f T}
$$

Hence

$$
S_{Y}(f)=|H(f)|^{2} S_{X}(f)=\frac{\sin ^{2} \pi f T}{T^{2} \pi^{2} f^{2}} \cdot \frac{N_{0}}{2}
$$

(b) The inverse Fourier transform gives

$$
R_{Y}(\tau)=\frac{N_{0}}{2} F^{-1}\left[\frac{\sin ^{2} \pi f T}{\pi^{2} f^{2} T^{2}}\right]=\frac{N_{0}}{2 T} \operatorname{tri}(\tau T), \quad R_{Y}(0)=\frac{N_{0}}{2 T}
$$

Problem 7. $\left\{X_{n}\right\}$ is a WSS process with autocorrelation function

$$
R_{X}(k)=4(1 / 2)^{|k|}, k=0, \pm 1, \pm 2, \ldots
$$

Find the optimum linear filter for estimating X_{n} from the observations X_{n-1} and X_{n-3} and compute the mean-square estimation error.

Solution $\hat{X}_{n}=h_{1} X_{n-1}+h_{2} X_{n-3}$.
\hat{X}_{n} - optimal $\Leftrightarrow E\left[\hat{X}_{n} X_{n-i}\right]=E\left[X_{n} X_{n-i}\right], \quad i=1,3$
$\left[\begin{array}{ll}R_{X}(0) & R_{X}(2) \\ R_{X}(2) & R_{X}(0)\end{array}\right]\left[\begin{array}{l}h_{1} \\ h_{2}\end{array}\right]=\left[\begin{array}{l}R_{X}(1) \\ R_{X}(3)\end{array}\right]$

$$
\left|\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right|\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 / 2
\end{array}\right]
$$

$$
\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=\frac{1}{14}\left[\begin{array}{rr}
4 & -1 \\
-1 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
1 / 2
\end{array}\right]=\frac{1}{12}\left[\begin{array}{l}
6 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right] .
$$

$e^{2}=R_{X}(0)-h_{1} R_{X}(1)=3$

Problem 8. The spectrum of a stationary stochastic process is to be estimated from the data:

$$
x[n]=\{0,6,-0,7,0,2,0: 3\}
$$

Due to the small sample support, a simple AR(1)-model is exploited:

$$
x[n]+a_{1} x[n-1]=e[n] .
$$

Determine estimates of the AR-parameter a_{1} and the white noise variance σ_{e}^{2}. Based on these, give a parametric estimate of the spectrum $P_{X}\left(e^{j \omega}\right)$.

Solution

The Yule-Walker method gives the estimate

$$
\left.\hat{a_{1}}=-\hat{r_{x}}[0]^{-1}\right] \hat{r_{x}}[1]
$$

With the given data, the sample autocorrelation function is calculated as

$$
\hat{r}_{x}[0]=\frac{1}{4}\left(0.6^{2}+0.7^{2}+0.2^{2}+0.3^{2}\right)=0.245
$$

$$
\hat{r}_{x}[1]=\frac{1}{4}(0.6 \times(-0.7)+(-0.7) \times 0.2+0.2 \times 0.3)=-0.125
$$

Thus, we get

$$
\hat{a}_{1}=\frac{0.125}{0.245} \approx 0.51
$$

The noise variance estimate follows as

$$
\hat{\sigma}_{e}^{2}=\hat{r}_{x}[0]+\hat{a}_{1} \hat{r}_{x}[1] \approx 0.18
$$

