# Solutions to Chapter 2 Exercises

#### Problem 2.3

```
\begin{split} & Pr(A \cup B \cup C) \\ & = Pr((A \cup B) \cup C) \\ & = Pr(A \cup B) + Pr(C) - Pr((A \cup B) \cap C) \\ & = Pr(A) + Pr(B) - Pr(A \cap B) + Pr(C) - Pr((A \cap C) \cup (B \cap C)) \\ & = Pr(A) + Pr(B) + Pr(C) - Pr(A \cap B) - Pr((A \cap C) \cup (B \cap C)) \\ & = Pr(A) + Pr(B) + Pr(C) - Pr(A \cap B) - Pr((A \cap C) \cup (B \cap C)) \\ & = Pr(A) + Pr(B) + Pr(C) - Pr(A \cap C) - Pr(B \cap C) \\ & - (Pr((A \cap C) + Pr(B \cap C)) - Pr(A \cap C) - Pr(B \cap C) + Pr(A \cap B \cap C)) \\ & = Pr(A) + Pr(B) + Pr(C) - Pr(A \cap B) - Pr(A \cap C) - Pr(B \cap C) + Pr(A \cap B \cap C) \end{split}
```

Assume S is the sample space for a given experiment.

Axiom 2.1: For an event A in S,

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$
.

Since  $n_A \ge 0$ , and n > 0,  $P(A) \ge 0$ .

Axiom 2.2: S is the sample space for the experiment. Since S must happen with each run of the experiment,  $n_S = n$ . Hence

$$P(S) = \lim_{n\to\infty} \frac{n_S}{n} = 1$$
.

Axiom 2.3a: Suppose  $A \cap B = 0$ . For an experiment that is run n times, assume the event  $A \cup B$  occurs n' times, while A occurs  $n_A$  times and B occurs  $n_B$  times. Then we have  $n' = n_A + n_B$ . Hence

$$P(A \cup B) = \lim_{n \to \infty} \frac{n'}{n} = \lim_{n \to \infty} \frac{n_A + n_B}{n} = \lim_{n \to \infty} \frac{n_A}{n} + \lim_{n \to \infty} \frac{n_B}{n} = P(A) + P(B).$$

Axiom 3.b: For an experiment that is run n times, assume the event  $A_i$  occurs  $n_{A_i}$  times,  $i = 1, 2, \cdots$ . Define event  $C = A_1 \cup A_2 \cdots \cup A_i \cdots$ . Since any two events are mutually exclusive, event C occurs  $\sum_{i=1}^{\infty} n_{A_i}$  times. Hence,

$$P(\bigcup_{i=1}^{\infty}A_i) = \lim_{n \to \infty} \frac{\sum_{i=1}^{\infty}n_{A_i}}{n} = \sum_{i=1}^{\infty}\lim_{n \to \infty} \frac{n_{A_i}}{n} = \sum_{i=1}^{\infty}P(A_i) \ .$$

#### Problem 2.10

(a) 
$$Pr(1\text{st} = \text{red}, 2\text{nd} = \text{blue}) = Pr(1\text{st} = \text{red})Pr(2\text{nd} = \text{blue} \mid 1\text{st} = \text{red})$$

$$Pr(1\text{st} = \text{red}) = \frac{3}{12}$$

$$Pr(2\text{nd} = \text{blue} \mid 1\text{st} = \text{red}) = \frac{5}{11}$$

$$Pr(1\text{st} = \text{red}, 2\text{nd} = \text{blue}) = \frac{3}{12} \cdot \frac{5}{11} = \frac{5}{44}.$$

(b) 
$$Pr(2nd = white) = \frac{4}{12} = \frac{1}{3}$$
.

Pr(2nd = white) = Pr(2nd = white | 1st = red) Pr(1st = red)  
+Pr(2nd = white | 1st = blue) Pr(1st = blue)  
+Pr(2nd = white | 1st = white) Pr(1st = white)  
= 
$$\frac{4}{11} \cdot \frac{3}{12} + \frac{4}{11} \cdot \frac{5}{12} + \frac{3}{11} \cdot \frac{4}{12} = \frac{1}{3}$$

(a) There are 2<sup>n</sup> distinct words.

(b) Method 1:

$$Pr(2 \text{ ones}) = Pr(\{110\} \cup \{101\} \cup \{011\}) = Pr(110) + Pr(101) + Pr(011) = \frac{3}{8}.$$

Method 2:

$$Pr(2 \text{ ones}) = \binom{3}{2} \cdot \left(\frac{1}{2}\right)^2 \cdot \left(\frac{1}{2}\right)^{3-2} = \frac{3}{8}.$$

## Problem 2.16

$$\begin{split} Pr(\text{defective}) &= Pr(\text{defective} \mid A) \cdot Pr(A) + Pr(\text{defective} \mid B) \cdot Pr(B) \\ &= (0.15) \cdot \frac{1}{1.15} + (0.05) \cdot \frac{0.15}{1.15} = 0.137. \end{split}$$

(a) The probability mass function for a binomial random variable is given by

$$Pr(X=k) = \left(\begin{array}{c} n \\ k \end{array}\right) p^k (1-p)^{n-k}$$

Tabulating the probabilities for various values of k we get the following

| k  | Probability      |
|----|------------------|
| 0  | 0.10737418240000 |
| 1  | 0.26843545600000 |
| 2  | 0.30198988800000 |
| 3  | 0.20132659200000 |
| 4  | 0.08808038400000 |
| 5  | 0.02642411520000 |
| 6  | 0.00550502400000 |
| 7  | 0.00078643200000 |
| 8  | 0.00007372800000 |
| 9  | 0.00000409600000 |
| 10 | 0.00000010240000 |

Refer to Figure 1 for the plot.

(b) The probability mass function for a Poisson distribution is given by

$$Pr(X = k) = e^{-\alpha} \frac{\alpha^k}{k!}$$

Tabulating the probabilities for various values of k we get the following

| k  | Probability      |
|----|------------------|
| 0  | 0.13533528323661 |
| 1  | 0.27067056647323 |
| 2  | 0.27067056647323 |
| 3  | 0.18044704431548 |
| 4  | 0.09022352215774 |
| 5  | 0.03608940886310 |
| 6  | 0.01202980295437 |
| 7  | 0.00343708655839 |
| 8  | 0.00085927163960 |
| 9  | 0.00019094925324 |
| 10 | 0.00003818985065 |

Refer to Figure 1 for the plot.

(c) Binomial:  $Pr(X \ge 5) = 1 - Pr(X < 5) = 1 - \sum_{k=0}^{4} {10 \choose k} \frac{1}{5} \frac{k}{5} \frac{4}{5}^{10-k} = 0.0328$ Poisson:  $Pr(X \ge 5) = 1 - Pr(X < 5) = 1 - \sum_{k=0}^{4} \frac{2^k}{k!} e^{-2} = 0.0527$ The Poisson approximation is not particularly good for this example.



Figure 1 Probability Mass Function for Binomial and Poisson Distributions

## Problem 2.29

## Method 1:

$$\begin{array}{lll} Pr(X=0) & = & \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} = \frac{1}{5}. \\ Pr(X=1) & = & 3 \cdot \frac{2}{6} \cdot \frac{4}{5} \cdot \frac{3}{4} = \frac{3}{5}. \\ Pr(X=2) & = & 3 \cdot \frac{4}{6} \cdot \frac{2}{5} \cdot \frac{1}{4} = \frac{1}{5}. \end{array}$$

## Method 2:

$$P_{X}(k) = \frac{\binom{2}{k} \cdot \binom{4}{3-k}}{\binom{6}{3} \cdot \frac{1}{y}} = \frac{\binom{2}{k} \cdot \binom{4}{3-k}}{20} \to \begin{cases} k = 0 \to P_{X}(0) = \frac{1}{5} \\ k = 1 \to P_{X}(1) = \frac{3}{5} \\ k = 2 \to P_{X}(2) = \frac{1}{5} \end{cases}$$

Let 
$$p = Pr(success) = \frac{1}{10}$$
.

$$Pr(1 \text{ success}) = {10 \choose 1} \cdot p \cdot (1-p)^9 = 0.3874.$$

$$Pr(\geq 2 \text{ successes}) = 1 - Pr(\leq 1 \text{ success}) = 1 - Pr(0 \text{ successes}) - Pr(1 \text{ success}).$$

$$Pr(0 \text{ successes}) = (1 - p)^{1}0 = 0.3487.$$

$$Pr(\ge 2 \text{ successes}) = 1 - 0.3487 - 0.3874 = 0.2639.$$