Solutions to Chapter 7 Exercises

Problem 7.3

Since the N_{i} are Gaussian, $\hat{\mu}$ is also Gaussian with

$$
\begin{aligned}
E[\hat{\mu}] & =\mu_{N}=0 \\
\operatorname{Var}(\hat{\mu}) & =\frac{\sigma_{N}^{2}}{n}=\frac{0.01}{100}=10^{-4} . \\
\Rightarrow \hat{\mu} & \sim N\left(0,10^{-4}\right) .
\end{aligned}
$$

Problem 7.8

Given $x_{1}, x_{2}, \ldots, x_{N}$ are observed, we want to minimize

$$
\epsilon^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-a-b n\right)^{2} .
$$

Taking derivatives with respect to a and b and setting equal to zero produces

$$
\begin{aligned}
\frac{\partial \epsilon^{2}}{\partial a} & =\frac{1}{N} \sum_{n=1}^{N}(-2)\left(x_{n}-a-b n\right)=0 \\
\Rightarrow \frac{1}{N} \sum_{n=1}^{N} x_{n} & =a\left(\frac{1}{N} \sum_{n=1}^{N} 1\right)+b\left(\frac{1}{N} \sum_{n=1}^{N} n\right) \\
\frac{\partial \epsilon^{2}}{\partial b} & =\frac{1}{N} \sum_{n=1}^{N}(-2 n)\left(x_{n}-a-b n\right)=0 \\
\Rightarrow \frac{1}{N} \sum_{n=1}^{N} n x_{n} & =a\left(\frac{1}{N} \sum_{n=1}^{N} n\right)+b\left(\frac{1}{N} \sum_{n=1}^{N} n^{2}\right)
\end{aligned}
$$

To simplify the notation, define the following:

$$
\begin{aligned}
\bar{n} & =\frac{1}{N} \sum_{n=1}^{N} n \\
\overline{n^{2}} & =\frac{1}{N} \sum_{n=1}^{N} n^{2} \\
\overline{x_{n}} & =\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\overline{n x_{n}} & =\frac{1}{N} \sum_{n=1}^{N} n x_{n}
\end{aligned}
$$

Then, the optimum values of a and b will satisfy the following matrix equation:

$$
\left[\begin{array}{cc}
1 & \bar{n} \\
\bar{n} & \overline{n^{2}}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
\overline{x_{n}} \\
\overline{n x_{n}}
\end{array}\right]
$$

The solution is

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\frac{\left[\begin{array}{c}
\overline{n^{2}} \cdot \overline{x_{n}}-\bar{n} \cdot \overline{n x_{n}} \\
\overline{n x_{n}}-\bar{n} \cdot \overline{x_{n}}
\end{array}\right]}{\overline{n^{2}}-(\bar{n})^{2}} .
$$

Problem 7.11

(a) Because X_{i} is a Bernoulli RV

$$
\begin{aligned}
\sigma_{X}^{2} & =p_{A}\left(1-p_{A}\right) \\
\hat{p_{A}} & =\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
E\left[\hat{p_{A}}\right] & =p_{A} \\
\operatorname{Var}\left(\hat{p_{A}}\right) & =\frac{\sigma_{X}^{2}}{n}=\frac{p_{A}\left(1-p_{A}\right)}{n}
\end{aligned}
$$

By virtue of the central limit theorem, we can write

$$
\begin{aligned}
\hat{p_{A}} \sim\left(p_{A}, \frac{p_{A}\left(1-p_{A}\right)}{n}\right) & \\
\operatorname{Pr}\left(\left|\hat{p_{A}}-p_{A}\right|<\varepsilon\right) & =1-2 Q\left(\frac{p_{A}+\varepsilon-p_{A}}{\sqrt{p_{A}\left(1-p_{A}\right) / n}}\right) \\
& =1-2 Q\left(\sqrt{\frac{n \varepsilon^{2}}{p_{A}\left(1-p_{A}\right)}}\right)
\end{aligned}
$$

(b)

$$
\operatorname{Pr}\left(\left|\hat{p_{A}}-p_{A}\right|<0.1 p_{A}\right)=0.95
$$

Using the result from (a) we get

$$
\begin{aligned}
1-2 Q\left(\sqrt{\frac{n\left(0.1 p_{A}\right)^{2}}{p_{A}\left(1-p_{A}\right)}}\right) & =0.95 \\
\Rightarrow Q\left(\sqrt{\frac{0.01 p_{A} n}{\left(1-p_{A}\right)}}\right) & \leq 0.025 \\
\Rightarrow \sqrt{\frac{0.01 p_{A} n}{\left(1-p_{A}\right)}} & \geq 1.9597 \approx 1.96
\end{aligned}
$$

Note in the last step, the inequality is reversed since $Q(x)$ is a decreasing function of x.

$$
\Rightarrow n \geq 19.6^{2} \frac{1-p_{A}}{p_{A}}
$$

(c)

$$
\begin{aligned}
Y_{n} & =\sum_{i=1}^{n} X_{i}=n \hat{p_{A}} \\
E\left[Y_{n}\right] & =n p_{A}
\end{aligned}
$$

Since the value of n was chosen to satisfy the constraints of (b), we can write

$$
E\left[Y_{n}\right]=19.6^{2} \frac{1-p_{A}}{p_{A}} p_{A}=19.6^{2}\left(1-p_{A}\right)
$$

Strictly speaking we will have

$$
E\left[Y_{n}\right] \geq 19.6^{2}\left(1-p_{A}\right)
$$

If we assume that $p_{A} \ll 1$ we can approximate it as

$$
E\left[Y_{n}\right] \geq 19.6^{2} \approx 384
$$

Problem 7.14

$$
\mu_{X}=5 \mathrm{volts}, \sigma_{X}=0.25 \mathrm{volts} .
$$

For $n=100$ samples, the sample mean will have

$$
E[\hat{\mu}]=5 \text { volts, } \sigma_{\hat{\mu}}=\frac{1}{40} \text { volts. }
$$

The 99% confidence interval will be ($\mu_{X}-\epsilon, \mu_{X}+\epsilon$) where

$$
\epsilon=c_{0.99} \sigma_{\hat{\mu}}=2.58 \cdot \frac{1}{40}=0.0645 \mathrm{volts}
$$

Hence, the 99% confidence interval is $(4.9355,5.0645)$ volts. None of the estimates in (a)-(c) fall in this range.

