Written test for examination in MVE135
Random processes with applications, 2007-10-25 Thursday, 14:00-18:00, V.
On duty: Rossitza Dodunekova, tel. 7723534
Time of visit 15:15 and 17:00.
Allowed material: The handbook Beta, Collection of Formulas for MVE135, calculators approved by Chalmers.

There are 30 total points in the examination. One needs 14 points for grade 3 (to pass), 18 points for grade 4 , and 24 points for grade 5 .

Problem 1. The input X in a binary optical communication system is a random variable with equally likely values 1 and 2 . The receiver output Y is a Poisson random variable which parameter is μ, when 1 is transmitted, and ν when 2 is transmitted.
(a) Compute $E[Y \mid X]$ and $E[Y]$.
1.5p
(b) Given that the receiver output is equal to 2 , find the conditional probability that 1 was sent.

Problem 2. A multiplexer combines N digital television signals into a common transmission line. Signal n generates X_{n} bits every 33 milliseconds, where X_{n} is a Gaussian random variable with mean m / N and variance σ^{2} / \sqrt{N}. Suppose that the multiplexer accepts a maximum total of T bits from the combined sources every 33 ms , and that any bits in excess of T are discarded. Let the signals be independent and assume that $T=m+t \sigma$, where $t>0$ is a fixed number. Let $Y_{\text {Disc }}$ be the number of bits discarded per $33-\mathrm{ms}$ period, i.e.,

$$
Y_{D i s c}= \begin{cases}X-T, & X>T \\ 0, & X \leq T\end{cases}
$$

Compute $E\left[Y_{D i s c}\right]$. What is the result when $t \rightarrow \infty$?

Problem 3. Suppose Z_{1} and Z_{2} are independent standard normal random variables. Define $X_{1}=Z_{1}, \quad X_{2}=3 / 5 Z_{1}+4 / 5 Z_{2}$. Compute $f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)$, the conditional PDF of X_{2}, given $X_{1}=x_{1}$.

Problem 4. Messages arrive in a multiplexer according to a Poisson process with mean $\lambda=10$ messages/second. Use the CLT to estimate the probability that more then 650 messages arrive in one minute.

Problem 5. Let X_{1}, X_{2}, \ldots be iid random variables with expected value m and variance σ^{2}, and consider the discrete time process $\left\{Z_{n}, n \geq 1\right\}$ with

$$
Z_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

(a) Find the autocovariance function of Z_{n}.
(b) Why is this process Markovian? Assume that X_{1} is continuous with CDF $F(x)$ and PDF $f(x)$ and compute

$$
F_{Z_{n} \mid Z_{n-1}}\left(x \mid Z_{n-1}=y\right)=P\left(Z_{n} \leq x \mid Z_{n-1}=y\right) \quad \text { and } \quad f_{Z_{n} \mid Z_{n-1}}\left(x \mid Z_{n-1}=y\right)
$$

Problem 6. Consider the short term integration of $X(t)$

$$
Y(t)=\frac{1}{T} \int_{t-T}^{t} X(u) d u
$$

where $X(t)$ is the white noise process with PSD $S_{X}(f)=N_{0} / 2$.
(a) Compute $S_{Y}(f)$, the PSD of $Y(t)$. 3p
(b) Compute the average power of $Y(t)$.

Problem 7. $\left\{X_{n}\right\}$ is a WSS process with autocorrelation function

$$
R_{X}(k)=4(1 / 2)^{|k|}, k=0, \pm 1, \pm 2, \ldots
$$

Find the optimum linear filter for estimating X_{n} from the observations X_{n-1} and X_{n-3} and compute the mean-square estimation error.
$3 p$

Problem 8. The spectrum of a stationary stochastic process is to be estimated from the following data:

$$
x[n]=\{0,6,-0,7,0,2,0,3\} .
$$

Due to the small sample support, a simple $\operatorname{AR}(1)$-model is exploited:

$$
x[n]+a_{1} x[n-1]=e[n] .
$$

Determine estimates of the AR-parameter a_{1} and the white noise variance σ_{e}^{2}. Based on these, give a parametric estimate of the spectrum $P_{X}\left(e^{j \omega}\right)$.

