RANDOM PROCESSES WITH APPLICATIONS 2008
 SOLUTION TO HOMEWORK 2

This assignment is optional. It gives two bonus points to the written examination, when the submitted solution collects at least 12 out of 16 .

Posted on September 25. Deadline for submission: October 10, 17:00

From October 7 until the deadline for submission I will be away. In this period you can e-mail me your questions regarding the homework. Note that solutions are to be submitted to SIMA SHAHSAVARI.

Rossitza Dodunekova

Problem 1. $X(t)$ is a zero-mean stationary Gaussian process with covariance function $C_{X}(\tau)$.
(a) Compute $P\{X(t) \geq X(s)\}$ when $C_{X}(t-s) \neq C_{X}(0)$ and when $C_{X}(t-s)=C_{X}(0)$.
(b) Show that for any t and h

$$
E\left[X(t) X^{2}(t+h)\right]=0
$$

Hint. Let $X_{1}=X(t)$ and $X_{2}=X(t+h)$. Find a constant α such that $X_{1}-\alpha X_{2}$ and X_{2} are independent and use the presentation $X_{1}=\left(X_{1}-\alpha X_{2}\right)+\alpha X_{2}$.

Solution.

(a) $P\{X(t) \geq X(s)\}=P\{X(t)-X(s) \geq 0\}=P\{X(t-s)-X(0) \geq 0\}$. $\operatorname{Var}(X(t-s)-X(0))=\operatorname{Cov}(X(t-s)-X(0), X(t-s)-X(0))=2\left(C_{X}(0)-C_{X}(t-s)\right)$

When $C_{X}(0) \neq C_{X}(t-s)$, then $X(t-s)-X(0) \sim \mathcal{N}\left(0,2\left(C_{X}(0)-C_{X}(t-s)\right)\right.$ and

$$
P\{X(t-s)-X(0) \geq 0\}=\frac{1}{2}
$$

When $C_{X}(0)=C_{X}(t-s)$, then $P\{X(t-s)-X(0)=0\}=1$ and $P\{X(t-s)-X(0) \geq 0\}=P\{X(t-s)-X(0)=0\}=1$.
(b) Denote $\sigma^{2}=C_{X}(0) . X_{1}$ and X_{2} are jointly Gaussian with correlation coefficient

$$
\rho=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{Var}\left(X_{1}\right) \operatorname{Var}\left(X_{2}\right)}}=\frac{C_{X}(h)}{\sigma^{2}} .
$$

Then

$$
\operatorname{Cov}\left(X_{1}-\alpha X_{2}, X_{2}\right)=\operatorname{Cov}\left(X_{1}, X_{2}\right)-\alpha \operatorname{Cov}\left(X_{2}, X_{2}\right)=C_{X}(h)-\alpha \sigma^{2}=\sigma^{2}(\rho-\alpha) .
$$

Choose $\alpha=\rho$. The random variables $X_{1}-\rho X_{2}$ and X_{2} are independent since they are jointly Gaussian and uncorrelated. Thus

$$
\begin{aligned}
E\left[X_{1} X_{2}^{2}\right] & =E\left[\left(X_{1}-\rho X_{2}+\rho X_{2}\right) X_{2}^{2}\right] \\
& =E\left[\left(X_{1}-\rho X_{2}\right) X_{2}^{2}\right]+\rho E\left[X_{2}^{3}\right]=E\left[X_{1}-\rho X_{2}\right] E\left[X_{2}^{2}\right]+\rho E\left[X_{2}^{3}\right]=0
\end{aligned}
$$

since $E\left[X_{1}-\rho X_{2}\right]=0$ and $E\left[X_{2}^{3}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} x^{3} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}\right\} d x=0$.
Problem 2. $X(t)$ is the Poisson process with rate λ. Consider the random process

$$
Y(t)=(-1)^{X(t)}, \quad t \geq 0 .
$$

(a) Find the mean function and the autocorrelation function of $Y(t)$. Is the process wide sense stationary
(b) Let $Z(t)=A Y(t)$, where A is a random variable, independent of $Y(t)$ and taking on values ± 1 with equal probabilities. Find the probability mass function of $Z(t)$. Is Z a wide sense stationary process?

Solution. The values $\{-1,1\}$ of the process $Y(t)$ depend on whether the value of $X(t)$ is even or not. Denote $P_{\text {even }}(t)=P\{X(t)$ is even $\}$. We know (the book, p. 284)

$$
P_{\text {even }}(t)=\frac{1+e^{-2 \lambda t}}{2} \text {. }
$$

(a) When $t>0$ we have

$$
P\{Y(t)=1\}=P_{\text {even }}(t), \quad P\{Y(t)=-1\}=1-P_{\text {even }}(t), \quad E[Y(t)]=2 P_{\text {even }}(t)-1=e^{-2 \lambda t} .
$$

Thus

$$
\mu_{Y}(t)=e^{-2 \lambda t} \quad \text { when } t>0 \quad \text { and } \quad \mu_{Y}(0)=E[1]=1 .
$$

For $t \geq 0$ and $\tau \geq 0$ we have

$$
R_{Y}(t, t+\tau)=E[Y(t) Y(t+\tau)]=1 \cdot P_{\text {even }}(\tau)+(-1) \cdot\left(1-P_{\text {even }}(\tau)\right)=e^{-2 \lambda \tau}
$$

Thus

$$
R_{Y}(\tau)=e^{-2 \lambda|\tau|}, \quad-\infty<\tau<\infty .
$$

$Y(t)$ is not WSS, since $m_{Y}(t)$ is not a constant. The process is known as the semirandom telegraph signal because its initial value $Y(0)$ is not random.
(b)

$$
\begin{aligned}
P\{Z(t)=1\} & =P\{A=1\} P\{Y(t)=1\}+P\{A=-1\} P\{Y(t)=-1\} \\
& =\frac{1}{2}\left[P_{\text {even }}(t)+P_{\text {odd }}(t)\right]=\frac{1}{2} .
\end{aligned}
$$

Since $E[A]=0$ and $E\left[A^{2}\right]=1$ we have

$$
\begin{gathered}
E[Z(t)]=E[A Y(t)]=E[A] E[Y(t)]=0 \\
R_{Z Z}\left(t_{1}, t_{2}\right)=E\left[A Y\left(t_{1}\right) A Y\left(t_{2}\right)\right]=E\left[A^{2}\right] E\left[Y\left(t_{1}\right) Y\left(t_{2}\right)\right]=R_{Y}\left(\left|t_{2}-t_{1}\right|=e^{-2 \lambda\left|t_{2}-t_{1}\right|} .\right.
\end{gathered}
$$

$Z(t)$ is then WSS. In fact, $Z(t)$ is the random telegraph signal with values ± 1.

Problem 3. $\left\{X_{n}\right\}$ is a WSS random process with autocorrelation function

$$
R_{X}(\tau)=16 e^{-5|\tau|} \cos 2 \pi \tau
$$

Compute the power spectral density and the average power of the process.

Solution. The average power of the process is $R_{X}(0)=16$. To compute the power spectral density we use the formula

$$
\left.\mathcal{F}\left\{16 e^{-5|\tau|} \cos 2 \pi \tau\right\}=\mathcal{F}\left\{16 e^{-5|\tau|}\right\} * \mathcal{F}\{\cos 2 \pi \tau\}\right](f)
$$

According to the table on p. 521

$$
\mathcal{F}\left\{\exp \left\{-\frac{|\tau|}{\tau_{0}}\right\}\right\}=\frac{2 \tau_{0}}{1+\left(2 \pi f \tau_{0}\right)^{2}}
$$

and

$$
\mathcal{F}\left\{\cos 2 \pi f_{0} \tau\right\}=\frac{1}{2} \delta\left(f-f_{0}\right)+\frac{1}{2} \delta\left(f+f_{0}\right) .
$$

Then

$$
S_{X}(f)=16 \frac{10}{25+4 \pi^{2} f^{2}} * \frac{1}{2}[\delta(f-1)+\delta(f+1)]+=80\left[\frac{1}{25+4 \pi^{2}(f-1)^{2}}+\frac{1}{25+4 \pi^{2}(f+1)^{2}}\right]
$$

Problem 4. Y_{n} is a WSS process defined as

$$
Y_{n}=\frac{1}{2} Y_{n-1}+W_{n}
$$

where W_{n} is the white-noise process of average power 1 . Show that the unit impulse response of the system producing Y_{n} is

$$
h_{n}= \begin{cases}2^{-n}, & n \geq 0 \\ 0, & n<0\end{cases}
$$

and compute $R_{Y}(m)$. Write equations for finding a filter producing the best predictor of Y_{n} from Y_{n-2} and Y_{n-3} 4 p

Solution. We have to show that the convolution of W and h satisfies the equation defining Y. Indeed, we have

$$
\begin{aligned}
& \sum_{k \geq 0} 2^{-k} W_{n-k}=W_{n}+\sum_{k \geq 1} 2^{-k} W_{n-k} \\
& =W_{n}+\frac{1}{2} \sum_{k-1 \geq 0} 2^{-(k-1)} W_{(n-1)-(k-1)}=W_{n}+\frac{1}{2} \sum_{j \geq 0} 2^{-j} W_{(n-1)-j}
\end{aligned}
$$

From here we obtain

$$
\begin{aligned}
& R_{Y}(k)=\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} 2^{-r} \cdot 2^{-s} R_{W}(k+r-s) \\
= & \sum_{r=0}^{\infty} 2^{-r} \cdot 2^{-(k+r)} \cdot 1=2^{-k} \sum_{r=0}^{\infty} 2^{-2 r}=\frac{4}{3} 2^{-k} .
\end{aligned}
$$

Then

$$
R_{Y}(k)=\frac{4}{3}\left(\frac{1}{2}\right)^{|k|}, \quad k=0, \pm 1, \ldots
$$

Let $\hat{Y}_{n}=z_{2} Y_{n-2}+z_{3} Y_{n-3}$ be the best predictor. The desired equations follow from the orthogonality condition $Y_{n}-\hat{Y}_{n} \perp Y_{n-2}$ and $\quad Y_{n}-\hat{Y}_{n} \perp Y_{n-3}$:
$z_{2} R_{Y}(0)+z_{3} R_{Y}(1)=R_{Y}(2)$
$z_{2} R_{Y}(1)+z_{3} R_{Y}(0)=R_{Y}(3)$.

