
Solution to the written test for examination in MVE135
Random processes with applications, 2008-10-23, 14:00 - 18:00, a house on Hörsalsvägen.

There are 30 total points in the examination. One needs 14 points for grade 3 (to pass), 18
points for grade 4, and 24 points for grade 5.

Problem 1. A communication channel accepts an arbitrary voltage input V and outputs a
voltage

Y = V + N

where N is a Gaussian random variable with mean zero and variance one, independent of the
input value. Suppose that the channel is used to transmit binary information as follows:

to transmit 0: input -1
to transmit 1: input 1.

The receiver decides a 0 was sent if the voltage is negative and a 1 otherwise. Find the
probability of the receiver making an error if both inputs are equally probable. 4p

Solution.

P{error|V = −1} = P{Y ≥ 0|V = −1} = P{−1 + N ≥ 0} = P{N ≥ 1} = Q(1) = 0.159

P{error|V = 1} = P{Y < 0|V = 1} = P{1 + N < 0} = P{N < −1} = Q(1) = 0.159.

By the total probability formula

P{error} = P{error|V = −1}P{V = −1} + P{error|V = 1}P{V = 1} = 0.159

Problem 2. The number of bytes in a message is described by a random variable N with
P (N = n) = (1− p)pn, n ≥ 0. The messages are broken into packets of length M bytes. Let
Q be the number of full packets in a message and R be the number of bytes left over.

(a) Compute the joint probability mass function of Q and R and the marginal probability
mass functions of Q and R. 2p

(b) What is the expected value of Q? Are Q and R independent? 2p

Solution. The joint PMF of Q and R is

(a)

P (Q = q, R = r) = P{N = qM + r} = (1 − p)pqM+r,

where q = 0, 1, . . . and r = 0, . . . M − 1.

The marginal PMFs are obtained from the joint PMF as

P{Q = q} = (1 − p)pqM
M−1
∑

r=0

pr = (1 − pM)
(

pM
)q

, q = 0, 1, . . .

P{R = r} = (1 − p)pr

∞
∑

q=0

(pM)q =
(1 − p)pr

1 − pM
, r = 0, . . . M − 1.

1



(b) Clearly, Q is the geometric random variable and E[Q] =
pM

1 − pM
. Since

P{Q = q, R = r} = P{Q = q}P{R = r} for q = 0, 1, . . . and r = 0, . . . M − 1

Q and R are independent.

Problem 3. The random variables X and Y are jointly Gaussian with expectation 0, variance
1, and correlation coefficient 1

4
. Find the distribution of Z = X − aY , where a is some non-

zero constant. For which value of a is the variance of Z equal to 1? For this value, compute
E[Z|Z < 1]. 4p

Solution. A linear combination of jointly Gaussian random variables is a Gaussian random
variable. Thus Z is Gaussian with

E[Z] = E[X] − E[aY ] = 0, V ar(Z) = 1 + a2 − a

2
.

V ar(Z) equals 1 when a(a − 1
2
) = 0 or a = 1

2
. In this case Z is a standard normal random

variable and we have

fZ(z|Z < 1) =
fZ(z)

P{Z < 1} [1 − u(z − 1)] =
exp{−z2/2}

[1 − Q(1)]
√

2π
[1 − u(z − 1)]

Thus

E[Z|Z < 1] =
1

[1 − Q(1)]
√

2π

∫ 1

−∞

z exp{−z2/2} dz

=
1

[1 − Q(1)]
√

2π

[

− exp{−z2/2}
∣

∣

∣

∣

1

−∞

]

= − exp{−1/2}
[1 − Q(1)]

√
2π

E[Z|Z < 1] = −0.2876

Problem 4. N(t) is the Poisson process with parameter λ. Show that its autocovariance
function is CNN(t1, t2) = λ min(t1, t2) and compute the autocovariance function of the process
e−t/2N(et). 5p

Solution. To compute the autocovariance function of N(t) we use the fact that the increments
of N(t) are independent and also that N(0) = 0. Suppose t1 ≤ t2. We have

CNN(t1, t2) = Cov
(

N(t1), N(t2)
)

= Cov
(

N(t1) − N(0), N(t2) − N(t1) + N(t1)
)

= Cov
(

N(t1) − N(0), N(t1)
)

= V ar(N(t1)) = λt1.

Thus for arbitrary t1 and t2
CNN (t1, t2) = λ min(t1, t2).

Denote X(t) = e−t/2N(et). We have

CXX(t1, t2) = Cov
(

e−t1/2N(et1), e−t2/2N(et2)
)

= e−(t1+t2)/2CNN(et1 , et2)

= e−(t1+t2)/2λ min(et1 , et2) = λe−(t1+t2)/2+min(t1, t2) = λe−|t1−t2|/2
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Problem 5. The input to a linear time invariant system with impulse response

h(t) =

{

8δ(t) + 1, if 0 ≤ t ≤ 1
0 otherwise

is the random process
X(t) = sin (2πt + Θ), −∞ < t < ∞,

where Θ is a random variable uniformly distributed over [0, 2π). Give a formula for the output
process Y (t) and compute the mean function of this process. 4p

Solution. Y (t) is computed as the convolution of the input and the impulse response function.

Y (t) =

∫ 1

0

[sin(2π(t−u)+Θ)[8δ(u)+1]du = 8 sin(2πt+Θ), since

∫ 1

0

sin(2π(t−u)+Θ)du = 0.

The mean function mY (t) is

mY (t) = mX(t)

∫ 1

0

h(t)dt = 0, since mX(t) =
1

2π

∫ 2π

0

sin (2πt + θ)dθ = 0.

Problem 6. Let X(t) be a wide sense stationary process with autocorrelation function RXX(τ).
A new process is formed by multiplying X(t) by a carrier to produce

Y (t) = X(t) cos(ω0t + Θ),

where ω0 is a fixed frequency and Θ is a random variable, which is independent of the process
X(t) and uniformly distributed over [0, 2π). Compute the power spectral density and the
average power of Y (t). 4p

Solution.

RY Y (t, t+τ) = E[X(t)X(t+τ)]E[cos(ω0t+Θ) cos(ω0(t+τ)+Θ)] = RXX(τ)
1

2
cos(ω0τ) = RY Y (τ).

To compute the power spectral density of the process Y (t) we apply above the formula

F
{

RXX(τ)
1

2
cos(ω0τ)

}

= F
{

RXX(τ)
}

∗ F
{1

2
cos(ω0τ)

}

According to the table on p. 521

F
{

cos(ω0τ)
}

=
1

2

[

δ
(

f − ω0

2π

)

+ δ
(

f +
ω0

2π

)]

Then

SY Y (f) =
1

4

[

SXX

(

f − ω0

2π

)

+ SXX

(

f +
ω0

2π

)]

The average power of Y (t) is

RY Y (0) =
1

2
RXX(0).
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Problem 7. Y [n] is an AR(1) process defined as

Y [n] =
1

2
Y [n − 1] + e[n],

where e[n] is the white-noise process of average power σ2.

(a) Compute RY Y (m), the autocorrelation function of Y [n]. 2p

(b) Let σ2 = 3. Find the unite impulse response of the filter producing the best predictor of
Y [n] from Y [n − 2] and Y [n − 3]. 2p

(c) Give a formula for the estimation error. 1p

Solution.

(a) One way to compute the auotcorrelation function of Y [n] is to multiply both parts of the
equation defining this process by Y [n − k], k = 0, 1, . . . and to take expectation from
both sides of the new equations. The gives the following recurent equations for RY Y (k):

RY Y (0) =
1

2
RY Y (1) + σ2

RY Y (k) =
1

2
RY Y (k − 1), k ≥ 1.

From the first two equations

RY Y (0) =
1

2
RY Y (1) + σ2

RY Y (1) =
1

2
RY Y (0)

we get RY Y (0) = 4
3
σ2 and then

RY Y (k) =
4

3
σ2

(1

2

)|k|

, k = 0, ±1, . . . .

(b) Let Ŷ [n] = z2Y [n − 2] + z3Y [n − 3] be the best predictor. The desired equations follow
from the orthogonality condition Y [n]− Ŷ [n] ⊥ Y [n− 2] and Y [n]− Ŷ [n] ⊥ Y [n− 3]:

z2RY Y (0) + z3RY Y (1) = RY Y (2)

z2RY Y (1) + z3RY Y (0) = RY Y (3).

With σ2 = 3 we have RY Y (k) = 4
(

1
2

)|k|

and the above then gives

4z2 + 2z3 = 1

2z2 + 4z3 = 1
2
.

Hence z2 = 1
4
, z3 = 0 and Ŷ [n] = 1

4
Y [n − 2].

(c)

e2 = E[(Y [n] − Ŷ [n])2] = E[Y [n](Y [n] − Ŷ [n])] = RY Y (0) − 1

4
RY Y (2) = 4 − 1

4
= 3.75.
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