
Complement on Digital Spectral Analysis

and Optimal Filtering

Random Processes With Applications (MVE 135)

Mats Viberg
Department of Signals and Systems
Chalmers University of Technology
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1 Introduction

The purpose of this document is to provide some complementing material on digital statistical signal
processing, and in particular spectral analysis and optimal filtering. The theory complements that of [1],
Chapters 10 and 11. While the presentation in [1] is largely based on continuous-time, most practical
implementations use digital signal processing. The available sampling rates (and thereby signal band-
widths) is continuously increasing, and today it is feasible with real-time digital signal processing even
at GHz bandwidths.

2 Random Processes in Discrete Time

This section gives a brief review of relevant properties of discrete-time stochastic processes, assuming that
the reader is already familiar with the continuous-time case. The reader is also assumed to be familiar
with basic concepts in discrete-time signals and systems, including the Discrete-Time Fourier Transform
(DTFT) and digital filters. See, e.g., [2] for a thorough background in signals and systems.

Autocorrelation function Just like for deterministic signals, it is of course perfectly possible to
sample random processes. The discrete-time version of a continuous-time signal x(t) is here denoted
x[n], which corresponds to x(t) sampled at the time instant t = nT . The sampling rate is Fs = 1/T
in Hz, and T is the sampling interval in seconds. The index n can be interpreted as normalized (to
the sampling rate) time. Similar to the deterministic case, it is in principle possible to reconstruct a
bandlimited continuous-time stochastic process x(t) from its samples {x[n]}∞n=−∞. In the random case
the reconstruction must be given a more precise statistical meaning, like convergence in the mean-square
sense. To simplify matters, it will throughout be assumed that all processes are (wide-sense) stationary,
real-valued and zero-mean, i.e. E{x[n]} = 0. The autocorrelation function is defined as

rx[k] = E{x[n]x[n− k]}

In principle, this coincides with a sampled version of the continuous-time autocorrelation rx(t), but one
should keep in mind that x(t) needs to be (essentially) bandlimited to make the analogy meaningful.
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Note that rx[k] does not depend on absolute time n due to the stationarity assumption. Also note that
the autocorrelation is symmetric, rx[k] = rx[−k] (conjugate symmetric in the complex case), and that
|rx[k]| ≤ rx[0] = σ2

x for all k (by Cauchy-Schwartz’ inequality).
For two stationary processes x[n] and y[n], we define the cross-correlation function as

rxy[k] = E{x[n]y[n− k]} .

The cross-correlation measures how related the two processes are. This is useful, for example for de-
termining who well one can predict a desired but unmeasurable signal y[n] from the observed x[n]. If
rxy[k] = 0 for all k, we say that x[n] and y[n] are uncorrelated. It should be noted that the cross-
correlation function is not necessarily symmetric, and it does not necessarily have its maximum at k = 0.
For example, if y[n] is a time-delayed version of x[n], y[n] = x[n − l], then rxy[k] peaks at lag k = l.
Thus, the cross-correlation can be used to estimate the time-delay between two measurements of the same
signal, perhaps taken at different spatial locations. This can be used, for example for synchronization in
a communication system.

Power Spectrum While several different definitions can be made, the power spectrum is here simply
introduced as the Discrete-Time Fourier Transform (DTFT) of the autocorrelation function:

Px(ejω) =
∞∑

n=−∞
rx[n]e−jωn (1)

The variable ω is ”digital” (or normalized) angular frequency, in radians per sample. This corresponds
to ”physical” frequency Ω = ω/T rad/s. The spectrum is a real-valued function by construction, and it
is also non-negative if rx[n] corresponds to a ”proper” stochastic process.
Clearly, the DTFT is periodic in ω, with period 2π. The ”visible” range of frequencies is ω ∈ (−π, π),
corresponding to Ω ∈ (−πFs, πFs). The frequency ΩN = πFs, or FN = Fs/2 is recognized as the Nyqvist
frequency. Thus, in order not to loose information when sampling a random process, its spectrum must
be confined to |Ω| ≤ ΩN . If this is indeed the case, then we know that the spectrum of x[n] coincides
with that of x(t) (up to a scaling by T ). This implies that we can estimate the spectrum of the original
continuous-time signal from the discrete samples.
The inverse transform is

rx[n] =
1
2π

π∫

−π

Px(ejω)ejωndω ,

so the autocorrelation function and the spectrum are a Fourier transform pair. In particular, at lag 0 we
have the signal power,

rx[0] = E{x2[n]} =
1
2π

π∫

−π

Px(ejω)dω ,

which is the integral of the spectrum. Imagine that we could filter x[n] through a narrow ideal band-pass
filter with passband (ω, ω + ∆ω). Denote the filtered signal xω[n]. According to the above, its power is
given by

E{x2
ω[n]} =

1
2π

ω+∆ω∫

ω

Px(ejη)dη =
∆ω

2π
Px(ejω) ,

where the equality holds for ∆ω → 0 (assuming Px(ejω) is smooth). Hence, with ∆ω = 2π∆f , we get

Px(ejω) =
E{x2

ω[n]}
∆f

.

This leads to the interpretation of Px(ejω) as a power spectral density, with unit power (e.g. voltage
squared) per normalized frequency ∆f . Or better yet, TPx(ejω), which is the spectrum of the corre-
sponding bandlimited continuous-time signal, has the unit power per Hz.
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White Noise The basic building block when modeling smooth stationary spectra is discrete-time white
noise. This is simply a sequence of uncorrelated random variables, usually of zero mean and time-invariant
power. Letting e[n] denote the white noise process, the autocorrelation function is therefore

re[k] = E{e[n]e[n− k]} =
{

σ2
e k = 0
0 k 6= 0 ,

where σ2
e = E{e2[n]} is the noise power. Such noise naturally arises in electrical circuits, for example due

to thermal noise. The most commonly used noise model is the AWGN (Additive White Gaussian Noise),
sometimes called ”university noise”. The noise samples are then drawn from a N(0, σe) distribution.
However, it is a mistake to believe that white noise is always Gaussian distributed. For example, the
impulsive noise defined by

e[n] =
{ N (0, σe/

√
ε) w.p. ε

0 w.p. 1− ε
,

where 0 < ε ¿ 1, is a stationary white noise, whose realizations have very little resemblance with AWGN.
Two examples are shown in Figure 1. Yet, both are white noises with identical second-order properties.
This illustrates that the second-order properties do not contain all information about a random signal,
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Figure 1: Realizations of an AWGN and an impulsive noise with ε = 0.1. Both are stationary white
noises with identical second-order properties.

this is true only in the case of a Gaussian process.
The spectrum of a white noise is given by

Pe(ejω) =
∞∑

n=−∞
re[n]e−jωn = σ2

e .

In other words, the white noise spectrum is flat over the region (−π, π). One can infer that in order for
a discrete-time noise to be white, the spectrum of the corresponding continuous-time signal should obey

Pe(Ω) =
{

σ2
eFs |Ω| ≤ πFs

0 |Ω| > πFs

This is usually called critical sampling. If the sampling rate is higher than necessary, the discrete-time
noise samples are in general correlated, although the spectrum of the continuous-time noise is flat over
its bandwidth.
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AR, MA and ARMA Processes Similar to the continuous-time case, it is very easy to carry the
spectral properties over to a filtered signal. Let the discrete-time filter H(z) (LTI-system) have impulse
response {h[n]}∞n=−∞. Assume that the stationary process e[n] is applied as input to the filter, see Figure
2. The output x[n] is then given by

x[n]e[n]
H(z)

Figure 2: Filtering a discrete-time random process by a digital filter.

x[n] = h[n] ∗ e[n] =
∞∑

k=−∞
h[k]e[n− k]

Provided the filter is stable, it is easy to show that the output signal is also a stationary stochastic
process, and that the input and output spectra are related by

Px(ejω) = |H(ejω)|2Pe(ejω) .

Also, the cross-spectrum, which is the DTFT of the cross-correlation, is given by

Pxe(ejω) =
∞∑

n=−∞
rxe[n]e−jωn = H(ejω)Pe(ejω) .

In particular, when the input signal e[n] is a white noise, the output spectrum is given by

Px(ejω) = σ2
e |H(ejω)|2.

In other words, if we are good in shaping the amplitude characteristics |H(ejω)| of a digital filter, we
can use this to model the spectrum of a stationary stochastic process. Indeed, the spectral factorization
theorem tells us that every smooth spectra can be well approximated by a filtered white noise, provided
the filter has a sufficiently high order. We will here only consider finite orders. Thus, let the transfer
function of the filter be

H(z) =
B(z)
A(z)

,

where the numerator and denominator polynomials (in z−1) are given by

B(z) = 1 + b1z
−1 + · · ·+ bqz

−q

A(z) = 1 + a1z
−1 + · · ·+ apz

−p .

Let the input to the filter be a white noise process e[n]. The filter output is given by the difference
equation

x[n] + a1x[n− 1] + · · ·+ apx[n− p] = e[n] + b1e[n− 1] + · · ·+ bqe[n− q]

Thus, the signal x[n] is an auto-regression onto its past values along with a moving ”average” (perhaps
weighted average would have been a better name) of the noise. Therefore, x[n] is called an ARMA (Auto-
Regressive Moving Average) process. Sometimes the orders are emphasized by writing ARMA(p, q). The
spectrum of an ARMA process is obtained as

Px(ejω) = σ2
e

|B(ejω)|2
|A(ejω)|2 .

Thus, shaping the spectrum of a process is reduced to appropriately selecting the filter coefficients and
the noise power.
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For the important special case when q = 0, H(z) = 1/A(z) is an all-pole filter. The process x[n] is called
an AR process, defined by

x[n] + a1x[n− 1] + · · ·+ apx[n− p] = e[n] .

The spectrum of an AR process is given by

Px(ejω) =
σ2

e

|A(ejω)|2 .

Similarly, when p = 0, H(z) = B(z) has only zeros and we get the MA process

x[n] = e[n] + b1e[n− 1] + · · ·+ bqe[n− q]

with
Px(ejω) = σ2

e |B(ejω)|2.
In general, it is difficult to say when an AR model is preferred over an MA or ARMA model. However, it
is more easy to get peaky spectra by using poles close to the unit circle. Similarly, spectra with narrow
dips (notches) are better modeled with zeros. See Figure 3 for some examples. The plots are produced
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Figure 3: Examples of spectra for the case of AR(4) and MA(4) models. The AR part better models
narrow peaks, whereas the MA part is better with notches and broad peaks.

with σ2
e = 1 and

B(z) = A(z) = 1− 0.16z−1 − 0.44z−2 + 0.12z−3 + 0.52z−4 .

The roots of this polynomial, which are the zeros and poles, respectively, are located at 0.9e±2π0.1j and
0.8e±2π0.4j . This explains why we see a notch (MA process) and a peak (AR process) at the normalized
frequencies 0.1 and 0.4 revolutions per sample, with the notch (peak) at 0.1 being more pronounced
because the zero (pole) is closer to the unit circle. In practice, AR models are often preferred because
they lead to simpler estimation algorithms than do MA or ARMA models, and also because we are more
often interested in peaks and peak locations than other properties of the spectrum.

Autocorrelation Function for an AR Process: The Yule-Walker Equations We saw previously
that it is very easy to compute the spectrum of an ARMA process once its polynomial coefficients are
known. In principle, the autocorrelation function can then be computed by the inverse DTFT. However,
for the important special case of an AR process there is a simpler and more practical procedure. Recall
the AR difference equation:

x[n] + a1x[n− 1] + · · ·+ apx[n− p] = e[n]
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Multiply both sides of the equation by x[n−k] for k ≥ 0 and take expectation. This leads to the relation

rx[k] + a1rx[k − 1] + · · ·+ aprx[k − p] = E{e[n]x[n− k]}

To evaluate the right hand side, first assume that k > 0. Then x[n − k] only depends on past values of
the noise, {e[n − k], e[n − k − 1], , e[n − k − 2], . . . }. We conclude that x[n − k], k > 0 is uncorrelated
with e[n], so E{e[n]x[n− k]} = 0 for k > 0. When k = 0, we use the AR equations to express x[n] as a
function of past values:

E{e[n]x[n]} = E{e[n](−a1x[n− 1]− · · · − apx[n− p] + e[n])} = σ2
e .

Thus we have proved the relation

rx[k] +
p∑

l=1

alrx[k − l] = σ2
e δ[k] , k ≥ 0 , (2)

where δ[k] = 0 for k 6= 0 and δ[0] = 1. The relation (2), for k = 0, 1, . . . , p is known as the Yule-Walker
(YW) equations. Since this is a linear relation between the AR coefficients and the autocorrelation
function, it can be used to efficiently solve for one given the other. If the autocorrelation function is
given, we can put the equation for k = 1, 2, . . . , N on matrix form as:




rx[0] rx[1] · · · rx[p− 1]
rx[1] rx[0] · · · rx[p− 2]

...
...

. . .
...

rx[p− 1] rx[p− 2] · · · rx[0]







a1

a2

...
ap


 = −




rx[1]
rx[2]

...
rx[p]


 . (3)

This linear system of equations is usually referred to as the Normal Equations. We can express the matrix
equation as

Rxa = −rx ,

where Rx is called the autocorrelation matrix (of size p×p). The solution w.r.t. a = [a1, a2, . . . , ap]T now
follows as a = −R−1

x rx. In practice, more efficient methods for computing a are often used, in particular
if p is large and/or if Rx is nearly singular.
Conversely, if ak, k = 1, 2, · · · , p and σ2

e are known in advance, then we can use the same set of Yule-
Walker equations to solve for rx[k], k = 0, 1, · · · , p. For example, when p = 2 we get




1 a1 a2

a1 1 + a2 0
a2 a1 1







rx[0]
rx[1]
rx[2]


 =




σ2
e

0
0




which can easily be solved for (rx[0], rx[1], rx[2])T .

Example 2.1 Auto-correlation of an AR(2) process
We demonstrate the Yule-Walker procedure by computing the auto-correlation function for the signal
model

x[n]− 1.5x[n− 1] + 0.7x[n− 2] = e[n] ,

where σ2
e = 1. The relation between the auto-correlation and the AR coefficients given above is in this

case: 


1 −1.5 0.7
−1.5 1.7 0
0.7 −1.5 1







rx[0]
rx[1]
rx[2]


 =




1
0
0




Solving the linear system gives

rx[0] ≈ 8.85 , rx[1] ≈ 7.81 , rx[2] ≈ 5.52
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Figure 4: Auto-correlation function for the AR(2) process x[n]− 1.5x[n− 1] + 0.7x[n− 2] = e[n].

The auto-correlation function at higher lags are computed recursively by

rx[k] = 1.5rx[k − 1]− 0.7rx[k − 2] , k > 0

The auto-correlation function for this process is plotted in Figure 4. To verify the above calculation, we
can insert the auto-correlation function into the normal equations:

[
8.85 7.81
7.81 8.85

] [
a1

a2

]
= −

[
rx[7.81]
rx[5.52]

]

Solving this linear system gives a1 = −1.50 and a2 = 0.70 as expected. Also,

σ2
e = rx[0] + a1rx[1] + a2rx[2] = 8.85− 1.5 · 7.81 + 0.7 · 5.52 = 1.00 ,

which again agrees with our expectation. 2

Autocorrelation Function for MA and ARMA Process Also in the case of a pure MA process,
the auto-correlation function is easy to compute. Consider the MA model:

x[n] = e[n] + b1e[n− 1] + · · ·+ bqe[n− q]

To obtain the variance rx[0], just square both sides of the equation and take expectation:

E{x2[n]} = rx[0] = E{(e[n] + b1e[n− 1] + · · ·+ bqe[n− q])(e[n] + b1e[n− 1] + · · ·+ bqe[n− q])}
= (1 + b2

1 + · · · b2
q)σ

2
e

where we have used that e[n] is white noise. For rx[1], multiply the MA equation by x[n − 1] and take
expectation:

rx[1] = E{(e[n] + b1e[n− 1] + · · ·+ bqe[n− q])(e[n− 1] + b1e[n− 2] + · · ·+ bqe[n− q − 1])}
= (b1 + b2b1 + · · · bqbq−1)σ2

e .

The same principle is used to compute rx[k], k = 2, 3, . . . , noting that rx[k] = 0 for k > q. Thus, an MA
process has a finite correlation length, given by its order q. Note that although we can easily compute
the auto-correlation function given the MA coefficients and the noise variance, the converse is in general
not as simple. This is because the relation between rx[k] and the bk:s is not linear as in the case of an AR
process. From the above we see that it is a quadratic relation. Although this may sound simple enough,
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a computationally efficient and robust (to errors in rx[k]) method to compute an MA model {bk}q
k=1, σ2

e

from the auto-correlation coefficients {rx[k]}q
k=0 is not known to date. The reader is referred to [3, 4] for

approximate methods with acceptable computational cost and statistical properties.
Computing the auto-correlation function for an ARMA process requires in general considerably more
effort than in the pure AR or MA cases. A common way to solve this problem is to exploit that the
auto-correlation is the inverse transform of the spectrum, which for an ARMA model is given by:

Px(ejω) = σ2
e

|B(ejω)|2
|A(ejω)|2 .

The inverse transform is

rx[n] =
1
2π

π∫

−π

Px(ejω)ejωndω ,

and the integral can be solved using calculus of residues. For low model orders, especially when the roots
of A(z) are real-valued, it is easier to use the inverse Z-transform:

rx[n] = Z−1{Px(z)} = Z−1

{
σ2

e

B(z)B(z−1)
A(z)A(z−1)

}
.

For simple cases, the inverse transform can be carried out using partial fraction expansion (with long
division if q ≥ p) and table lookup. For the special case of an ARMA(1,1)-process, there is an even
simpler procedure. Consider the model

x[n] + a1x[n− 1] = e[n] + b1e[n− 1]

First, square both sides of the equation and take expectation, yielding

rx[0](1 + a2
1) + 2a1rx[1] = (1 + b2

1)σ
2
e

Next, multiply the ARMA(1,1) equation by x[n− 1] and take expectation. This gives

rx[1] + a1rx[0] = 0 + b1σ
2
e ,

where we have used that x[n− 1] is uncorrelated with e[n] and that E{e[n− 1]x[n− 1]} = σ2
e . We now

have two equations in the two unknowns rx[0] and rx[1], which can easily be solved given numerical values
of a1, b1 and σ2

e . To obtain rx[k] for higher lags, multiply the ARMA equation by x[n − k], k > 1 and
take expectation. This gives

rx[k] + a1rx[k − 1] = 0 , k > 1.

Thus, rx[k] can be recursively computed once rx[1] is known. The above relation is known as the extended
Yule-Walker equations, and a similar relation is obtained in the general ARMA(p,q) case for lags k > q.
This shows that a linear relation between the auto-correlation function and the AR parameters {ak}
can be obtained also in the ARMA case. However, the auto-correlation coefficients are still non-linear
functions of the MA parameters {bk}.

Spectral Lines By spectral factorization, any smooth spectrum can be well approximated by an ARMA
process of sufficiently high order. But what about spectra that are not smooth? The so-called Wold
decomposition tells us that all stationary stochastic processes (i.e. even those with non-smooth spectra)
can be decomposed into a ”purely” stochastic part and a perfectly predictable part. The stochastic part
is represented as an ARMA model as before. The remaining part is represented as a sum of sinusoids:

s[n] =
p∑

k=1

Ak cos(ωkn + φk) .
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The frequencies ωk and the amplitudes Ak are usually regarded as deterministic (fixed), whereas the
initial phases φk are modeled as independent and uniformly distributed in (0, 2π). It is then easy to show
that s[n] in fact becomes a stationary stochastic process with zero mean and autocorrelation function

rs[k] =
p∑

k=1

A2
k

2
cos(ωkn) .

Although s[n] is formally a stochastic process, it is clear that we can perfectly predict the future values
of s[n] if we only know sufficiently many initial conditions. The interested reader can show that both s[n]
and rs[n] obey the following homogenous difference equation of order 2p:

s[n] + a1s[n− 1] + · · ·+ a2ps[n− 2p] = 0 ,

where the corresponding polynomial A(z) has its roots on the unit circle, at {e±jωk}p
k=1.

Taking the DTFT of rs[k], the spectrum is obtained as

Ps(ejω) =
π

2

p∑

k=1

A2
k {δ(ω − ωk) + δ(ω + ωk)} .

In other words, the spectrum consists of infinitely narrow spectral peaks, located at the frequencies ±ωk.
We get peaks also at the negative frequencies, because cosωn = (ejωn+e−jωn)/2 consists of two ”phasors”
rotating in opposite directions. The angular speed of these phasors are the frequencies.

3 Digital Spectral Analysis

We have previously argued that the spectrum of a bandlimited continuous-time signal x(t) can in princi-
ple be inferred from its discrete-time samples x[n]. However, computing the spectrum involves averaging
over infinitely many realizations of the signal. In practice, one has usually access to only one realization.
Fortunately, for a well-behaved stationary signal, we can replace ensemble averaging by time averaging
(ergodicity). Thus, given an infinite observation time, the spectrum of a signal could be perfectly es-
timated. In practice, the data length is limited by the available time to deliver a result, the computer
processor speed and memory size, and/or the time over which the process can be considered stationary.
Thus, the problem of spectral estimation is to estimate the spectrum Px(ejω) based on a finite sample
{x[0], x[1], . . . , x[N − 1]}. The number of data required will depend on the demanded accuracy as well as
the nature of the true spectrum. It is also different for different methods as we shall see.

3.1 Non-Parametric Methods

The simplest and most straightforward way to estimate the power spectrum of a signal is to use non-
parametric methods, also known as Fourier-based (or window-based) methods. The main advantages
of these methods are that 1) they do not require specification of a signal model, and 2) they are easy
to implement and computationally inexpensive due to the efficient FFT (Fast Fourier Transform). The
disadvantage is that the frequency resolution is limited by the length of the observation time.

The Periodogram

The classical approach to spectral estimation is to use the so-called periodogram. For a given data
sequence x[n], n = 0, 1, · · · , N − 1, the periodogram is the normalized magnitude square of the DTFT:

P̂per(ejω) =
1
N
|XN (ejω)|2 (4)

XN (ejω) =
N−1∑
n=0

x[n]e−jωn (5)
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We remember from the deterministic Signals and Systems theory that the finite-interval DTFT (and
hence the periodogram) has a limited frequency resolution. Two spectral peaks that are spaced less than
∆ω ≈ 2π/N apart will show up as a single peak in P̂per(ejω). Still, smoother parts of the spectrum of a
deterministic signal will generally be well approximated by the periodogram. Unfortunately, this is not
the case when x[n] is stochastic. The periodogram will then reflect the spectral contents of the particular
realization of x[n] that has been observed. In general, we are more interested in the average behavior,
given by the ”true” spectrum (1). To connect the two, it is useful to rewrite (4) in the form

P̂per(ejω) =
N−1∑

k=−N+1

r̂x[k]e−jω (6)

where r̂x[k] is the sample autocorrelation function

r̂x[k] =
1
N

N−1∑

n=k

x[n]x[n− k] .

The interested reader is encouraged to prove the equivalence of (4) and (6). It is now easy to show that

lim
N→∞

E{P̂per(ejω)} = Px(ejω)

which shows that the periodogram is an asymptotically unbiased estimator. Under some regularity
conditions, it is further possible to show [3] that

E{(P̂per(ejω)− Px(ejω))2} = P 2
x (ejω) + RN ,

where the reminder term RN tends to zero as N →∞. Thus, the standard deviation of the periodogram
is approximately as large as the quantity (the spectrum) it is supposed to estimate. In its basic form, the
periodogram is apparently an unacceptably noisy estimator. Fortunately, there are modifications with
much better behavior.

The Modified Periodogram

The DTFT has a limited resolution, due to the inherent windowing of the data. We can express the
DTFT as

XN (ejω) =
∞∑

n=−∞
wR[n]x[n]e−jωn ,

where wR[n] is the length-N rectangular window

wR[n] =
{

1 0 ≤ n ≤ N − 1
0 otherwise

Window functions are usually characterized in the frequency domain in terms of the mainlobe width ∆ω
and the peak sidelobe level. Among all windows of a given length, the rectangular has the smallest ∆ω,
given by ∆ω = 2π/N (radians/sample). Figure 5 shows the periodogram for two sinusoids of different
frequencies. In the left plot, the sinusoids are well separated, and two peaks are clearly seen at the right
frequencies. In the right plot, the periodogram fails to resolve the two frequency components, and only
one (broad) peak is visible. We also see in the plot that the peak sidelobe of the rectangular window
is only about 13 dB below the mainlobe. This is independent of the number of samples. Therefore,
weaker signal components can be masked by a neighboring strong frequency peak. This effect, called the
”masking phenomenon”, can be alleviated by using a different window function:

Xw(ejω) =
∞∑

n=−∞
w[n]x[n]e−jωn .

The frequency resolution is then traded for better sidelobe suppression. For example, the so-called
Hamming window has a frequency resolution of about 1.3×(2π/N) and peak sidelobe -43 dB [3]. Another
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Figure 5: Periodogram for two sinusoids of frequencies f1 = 0.2, f2 = 0.3 (left plot), and f1 = 0.2, f2 =
0.21 (right plot). The number of samples is N = 64, so the frequency resolution is ∆f = 1/N = 0.0156.
In the right plot, f2 − f1 = 0.01 < ∆f , and the frequencies cannot be resolved.

useful choice is the Chebyshev window, which has a constant sidelobe level that can be chosen by the
user (lower sidelobes mean of course less resolution). Figure 6 illustrates the operation of four different
windows. The weak frequency component is masked when no windowing is used, but clearly visible with
the Hamming and Chebyshev windows. The periodogram using windowed data is usually called the
modified periodogram. The windowing has a negligible effect on the variance, so for a random signal it
needs to be combined with other modifications.

Bartlett’s and Welch’s Methods: Periodogram Averaging

To overcome the disadvantage of high variance in the periodogram or the modified periodogram, Bartlett
proposed to divide the data into K = N/M non-overlapping segments. For each segment of data a ”local”
periodogram is applied. This is followed by averaging all periodograms as follows:

PB(ejω) =
1
K

K∑

i=1

P̂ (i)
per(e

jω) .

If the local periodograms are considered approximately uncorrelated, the averaging leads to a reduction
of the variance by a factor of K = N/M :

E{(P̂B(ejω)− Px(ejω))2} ≈ M

N
P 2

x (ejω) .

The price for this is a reduced frequency resolution. Since each data length is only M = N/K samples,
the resolution is ∆ω ≈ 2π/M = 2πK/N . Provided N is large enough, a ”sufficient” resolution will
anyway be obtained, and for a fixed M , the variance of P̂B(ejω) will tend to zero as N →∞.
A further refinement of the technique of periodogram averaging is Welch’s method. The idea is to use
overlapping segments to increase the frequency resolution (or the number of segments). To reduce the
dependence between the segments, modified periodograms are used. For a well chosen window function,
a better trade-off between resolution (bias) and variance is in general achieved, and at the same time the
masking problem is addressed. For more details, see [3].

Blackman-Tukey’s Method: Smoothed Periodogram

The source of the problem with the high variance in the periodogram is clearly visible in the form (6).
Each sample correlation r̂x[k] is based on averaging N − k data samples. Thus, the variance of r̂x[k]
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Figure 6: Spectral estimates for three sinusoids of frequencies f ∈ {0.20, 0.21, 0.2295}. The location of the
f = 0.2295 component is at a sidelobe of the other components, and since its amplitude is 26 dB below
the others it is completely masked by the strong neighbors when no windowing is used. The data windows
are: a) Rectangular (no windowing), b) Bartlett (triangular), c) Hamming, and d) Chebyshev with 40 dB
attenuation. The number of samples is N = 128.

increases with increasing k, until at k = N − 1 there is no averaging at all. A very natural idea is then
to introduce a weighting in (6), which gives successively smaller weights for increasing lag parameter k.
Denoting the correlation window wlag[k], which is non-zero for −M ≤ k ≤ M , the so-called Blackman-
Tukey estimate is given by

P̂BT (ejω) =
M∑

k=−M

wlag[k]r̂x[k]e−jkω . (7)

The original periodogram is retrieved if M = N and a rectangular window is used. An appealing
interpretation of P̂BT (ejω) is obtained by looking at (7) as the DTFT of wlag[k]r̂x[k]:

P̂BT (ejω) =
∞∑

k=−∞
wlag[k]r̂x[k]e−jkω = DTFT{wlag[k]r̂x[k]}
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(since wlag[k] = 0 for |k| > M). Multiplication in the time domain corresponds to convolution in the
frequency domain, so we can also write

P̂BT (ejω) =
1
2π

Wlag(ejω) ∗ P̂per(ejω) =
1
2π

π∫

−π

P̂per(ej(ω−ξ))Wlag(ejξ)dξ ,

where Wlag(ejω) is the DTFT of the window function and P̂per(ejω) is the periodogram, which is the
DTFT of r̂x[k]. Thus, P̂BT (ejω) is in effect a smoothed periodogram. Think of Wlag(ejω) as a rectangular
box of size ∆ω. Then, the BT (Blackman-Tukey) spectral estimate at a certain frequency ω is obtained
by a local averaging (=smoothing) of the periodogram, in the interval (ω−∆ω/2, ω+∆ω/2). In practice,
the window function has a non-rectangular mainlobe which implies some weighted averaging, and also
sidelobes which may result in frequency masking.
It is clear that the smoothing reduces the variance, at the price of a reduced frequency resolution (bias).
It can be shown that (e.g. [3])

E{P̂BT (ejω)} ≈ 1
2π

Px(ejω) ∗Wlag(ejω)

E{(P̂BT (ejω)− Px(ejω))2} ≈ 1
N

M∑

k=−M

w2
lag[k] P 2

x (ejω)

Given these formulas, the length and the shape of the lag window is selected as a tradeoff between the
variance and the bias of the estimate. For M → ∞, the Fourier transform of the lag window becomes
more and more like a Dirac pulse, and the BT estimate becomes unbiased. In practice, M should be
chosen large enough so that all details in the spectrum can be recovered (which of course depends on the
shape of the true spectrum), but yet M ¿ N to reduce the variance. In general, the BT method gives
the best trade-off among the non-parametric spectral estimation methods presented here.

Example 3.1 Non-Parametric Spectral Estimation
A set of N = 1000 data samples were generated according to the AR model

x[n]− 1.5x[n− 1] + 0.7x[n− 2] = e[n] ,

where e[n] is N (0, 1) white noise. Figure 7, left plot, shows the true spectrum along with the Periodogram
estimate. It is clear that the Periodogram is a very noise estimate of the spectrum, although ”on average”
it looks OK. In Figure 7, right plot, the BT spectrum estimate is shown for various lengths M of the lag
window. A Hamming window is used. It is clear that reducing M lowers the variance of the estimate at
the price of a reduced resolution. In this case, M ∈ (20, 50) appears to be a good choice. 2

3.2 Parametric Spectral Estimation

As we previously saw, non-parametric spectral estimation methods have limitations in terms of frequency
resolution and estimation variance. An attempt to overcome these limitations is to use parametric
modeling of the measured signal. Such methods are expected to perform much better when the ”true”
spectrum can be well approximated with a model using few parameters in the chosen model class. This
is because the variance of the estimated spectrum is in general proportional to the number of estimated
parameters. We shall only consider signals with AR models in this review (for other models, see e.g.
[3, 4]).

AR Models

In an AR(p) model, the data sample at time n is assumed to be the weighted combination of the previous
data samples x[n− k], k = 1, . . . , p, and a ”driving” white noise e[n],

x[n] = −
p∑

k=1

akx[n− k] + e[n] .
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Figure 7: Examples of non-parametric spectrum estimation using the Periodogram (left plot) and the
Blackman-Tukey method (right plot). The true spectrum is an AR(2) process.

This is equivalent to x[n] being the output of an all-pole system H(z) = 1/A(z), whose input is the white
noise e[n]. Given the above model, the spectrum of x[n] is represented as

Px(ejω) =
σ2

e

|A(ejω)|2 .

Therefore, the spectral estimation is now reduced to selecting the model order p, finding the model
parameters {ak}k=1p, and estimating the innovation variance σ2

e . Now, recall the normal equations (3).
Given measured data {x[n]}N−1

n=0 , a natural idea is to replace the true (but unknown) autocorrelations
rx[k] in (3) with the sample autocorrelations:

r̂x[k] =
1
N

N−1∑

n=k

x[n]x[n− k] , k = 0, 1, . . . , p .

The sample version of the normal equations are now expressed as



r̂x[0] r̂x[1] · · · r̂x[p− 1]
r̂x[1] r̂x[0] · · · r̂x[p− 2]

...
...

. . .
...

r̂x[p− 1] r̂x[p− 2] · · · r̂x[0]







a1

a2

...
ap


 = −




r̂x[1]
r̂x[2]

...
r̂x[p]




The solution is given by â = −R̂−1
x r̂x with obvious notation. Several numerically efficient algorithms

exist for computing the estimate, including the so-called Levinson-type recursions, see [3]. However, for
our purposes, it suffices to type a=-R\r in Matlab, or use a suitable command from the Signal Processing
or System Identification toolboxes.
Once the AR parameters are estimated, the noise variance is computed using (2) for k = 0, leading to

σ̂2
e = r̂x[0] +

p∑

k=1

âlr̂x[k] .

Several methods have been proposed to estimate the model order p. The basic idea of most methods is
to compute the noise variance σ̂2

e for increasing values of p = 1, 2, . . . , and observe the decrease of the
residual noise power. When the ”true” order has been found (if there is one), the noise power is expected
to level out, i.e. further increase of p does not yield any significant decrease of σ̂2

e . The difference among
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the various suggested methods lies in determining what to mean by a ”significant” decrease. See, e.g.,
[4] for details.

Example 3.2 AR Spectral Estimation
Consider the same AR(2) model as in Example 3.1. For the same N = 1000 samples, the sample auto-
correlation function was calculated to

r̂x[0] = 7.74 , r̂x[1] = 6.80 , r̂x[2] = 4.75 .

Solving the YW equations for the AR parameters (assuming the correct model order p = 2 is known)
then gives â1 = −1.50, â2 = 0.70, which in fact agrees with the true parameters up to the given precision.
The estimated noise variance is found to be

σ̂2
e = 7.74− 1.50 · 6.80 + 0.70 · 4.75 = 0.87 ,

which is slightly too low. The resulting YW-based spectrum estimate is displayed in Figure 8. It is
remarked that the pyulear command in Matlab gives a spectrum estimate with the same shape, but the
level is too low. 2
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Figure 8: Parametric AR spectral estimation using the YW method. Both the estimated and the true
spectrum is an AR(2) model.

In the above example, the YW method is applied to data that are generated according to an AR model
with known order. As one could expect, the resulting spectrum estimate agrees very well with the true
spectrum. With measured data, it is of course never the case that an AR model can give a perfect
description of the true spectrum. The best one can hope for is that a ”sufficiently good” approximation
can be found using a not too high model order. It this is the case, the parametric AR-based spectrum
estimate will in general give better performance than the non-parametric methods, particularly for short
data records (N small).

4 Optimal Filtering

One of the main tasks in digital signal processing is to estimate signals (or parameters of signals) from
noise corrupted measurements. For example, background noise can disturb a recorded speech signal
so that it becomes unintelligible, or an image taken from an infrared camera shows thermal noise that
significantly reduces the image quality. The noise is often modeled as additive, although in many cases
there are also other distortions, including filtering (”blurring”) and phase-noise, which is multiplicative.
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Assuming additive noise, the measured signal x[n] can be described as a stochastic process,

x[n] = s[n] + w[n]

where s[n] denotes the signal of interest and w[n] is the noise (or disturbance). The optimal filtering
problem is to construct a linear filter H(z) such that the filtered signal d̂[n] is the ”best” estimate of some
reference signal d[n]. Here, the reference signal d[n] can be the signal s[n] itself, in which case we talk
about the ”filtering” problem. If d[n] = s[n+k], k > 0 or d[n] = x[n+k], k > 0, we have the ”prediction”
problem, and if d[n] = s[n − k] the problem is known as ”smoothing”. Other interesting cases include
the so-called deconvolution, or equalization, problem, where s[n] is a filtered (distorded) version of d[n].
Figure 4 depicts the process of optimal linear filtering for signal estimation. An objective criterion is

x[n]
H(z)

d[n] e[n]^

_

d[n]

+

Figure 9: Optimal linear filter for signal estimation.

required to quantify what we mean by ”optimal”. A commonly use criterion is the MSE (Mean Square
Error). The filter coefficients are then selected to minimize the MSE

MSE = E{(d[n]− d̂[n])2} .

Since we are only looking for linear estimates, the optimal d̂[n] will be termed an LMMSE (Linear
Minimum Mean Square Error) estimate. In the case of Wiener filtering, the observed data x[n] is assumed
to be wide-sense stationary. This leads to a time-invariant filter H(z), so that also d̂[n] is stationary. For
time-varying signal models (including transients), the LMMSE principle leads to the Kalman filter, see
e.g. [3].
Generally, the estimate d̂[n] is a linear combination of measured data samples

d̂[n] =
∑

k

h[k]x[n− k] .

The range of k, i.e., the extent of the impulse response h[k], distinguishes between different cases of
interest. Inserting the above into the MSE expression leads to

MSE(h) = E

{
(d[n]−

∑

k

h[k]x[n− k])2
}

,

where the dependence of the MSE on h, the vector of (possibly infinitely many) impulse response coeffi-
cients, has been stressed. It is clear that the MSE is a concave quadratic function of the impulse response
coefficients. Hence, we can find the minimum simply by differentiating w.r.t. h[l], l ranging over the same
values as k, and setting the derivatives to zero. Assuming we can interchange the order of differentiation
and expectation, we get

∂

∂h[l]
MSE(h) = E

{
∂

∂h[l]
(d[n]−

∑

k

h[k]x[n− k])2
}

= E

{
2(d[n]−

∑

k

h[k]x[n− k])(−x[n− l])

}

Evaluating the expectation now yields

∂

∂h[l]
MSE(h) = −2rdx[l] + 2

∑

k

h[k]rx[l − k]
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Equating the derivative to zero shows that the optimal filter coefficients must satisfy
∑

k

h[k]rx[l − k] = rdx[l] . (8)

This relation, for a suitable range of k and l, is known as the Wiener-Hopf (W-H) equations.

4.1 Causal FIR Wiener Filters

We shall first review case of a causal FIR (Finite Impulse Response) filter. The estimate of d[n] is then
based on p past samples of x[n]:

d̂[n] =
p−1∑

k=0

h[k]x[n− k]

Thus, H(z) is the FIR filter

H(z) =
p−1∑

k=0

h[k]z−k

For this case, the W-H equations become

p−1∑

k=0

h[k]rx[l − k] = rdx[l] , l = 0, 1, . . . , p− 1.

This is a set of p linear equations in the p unknowns h[0], . . . , h[p−1]. The solution is found by expressing
the W-H equations in matrix form:




rx[0] rx[1] · · · rx[p− 1]
rx[1] rx[0] · · · rx[p− 2]

...
...

. . .
...

rx[p− 1] rx[p− 2] · · · rx[0]







h[0]
h[1]

...
h[p− 1]


 =




rdx[0]
rdx[1]

...
rdx[p− 1]




We can express this compactly as Rxh = rdx, and the solution is given by hFIR = R−1
x rdx. This gives

the coefficients of the optimal FIR Wiener filter. The minimum MSE can be shown to be

MSE(hFIR) = rd[0]−
p−1∑

k=0

rdx[k]hFIR[k] = rd[0]− rT
dxhFIR

Once the optimal filter has been found, the best estimate (in the LMMSE sense) is given by

d̂[n] =
p−1∑

k=0

hFIR[k]x[n− k] = hT
FIRx[n] .

To find the optimal LMMSE filter requires apparently that the autocorrelation sequence rx[k] and cross
correlation sequence rdx[k], for k = 0, 1, · · · , p − 1, are known in advance. In many practical situations
this information is unavailable, and in addition the statistical properties may be (slowly) time-varying.
In such a case, it may be possible to apply a so-called adaptive filter, which learns the optimal filter
coefficients from data. In this context, FIR filters are highly useful, since they are always guaranteed to
be stable. Adaptive filtering will be explored in the forthcoming course Applied Signal Processing.

Example 4.1 (
FIR Wiener Filter) Suppose a desired signal d[n] is corrupted by additive noise w[n], so the measured
signal x[n] is given by x[n] = d[n] + w[n]. The desired signal is modeled by the AR(1) equation

d[n]− 0.5d[n− 1] = ed[n] ,
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whereas the disturbance is modeled by

w[n] + 0.5w[n− 1] = ew[n] .

Here, ed[n] and ew[n] are zero-mean white noises with variance σ2
ed = σ2

ew = 1. The signal and noise
spectra are displayed in Figure 10, left plot. The signal is of low-pass character whereas the noise is
high-pass. The auto-correlation functions are computed by the Yule-Walker equations, which for d[n]
reads

rd[0]− 0.5rd[1] = 1
rd[1]− 0.5rd[0] = 0

with solution rd[0] = 4/3, rd[1] = 2/3, and in general rd[k] = 4
30.5|k|. Similarly, rw[k] = 4

3 (−0.5)|k|.
Assuming d[n] and w[n] to be independent, we get rx[k] = rd[k] + rw[k] and rdx[k] = rd[k]. Thus, the
W-H equations for an FIR Wiener filter of length p = 2 is obtained as

[
8/3 0
0 8/3

] [
h[0]
h[1]

]
=

[
4/3
2/3

]

with solution h[0] = 0.5 and h[1] = 0.25. The magnitude of the optimal filter is shown in Figure 10,
right plot. As expected, the Wiener filter is passing frequencies where the signal dominates the noise and
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Figure 10: Signal and noise spectra (left plot), and magnitude of the corresponding length p = 2 FIR
Wiener filter (right plot).

suppresses those where the noise is stronger. The minimum MSE is reduced from σ2
w = 4/3 (no filtering)

to
MSEmin = 4/3− 0.5× (4/3)− 0.25× (2/3) = 0.5 .

2

Example 4.2 Linear Prediction
Consider once again the AR(2) model

x[n]− 1.5x[n− 1] + 0.7x[n− 2] = e[n]

where e[n] is zero-mean white noise with variance σ2
e = 1. Suppose we wish to predict the future values

of {x[n]} based on past observations. We choose an FIR predictor of length p = 2:

x̂[n + k] = h[0]x[n] + h[1]x[n− 1] ,
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where k > 0. Thus d[n] = x[n+ k] in this case. The coefficients {h[0], h[1]} should be chosen to minimize
the MSE

MSE(h[0], h[1]) = E{(x[n + k]− x̂[n + k])2} .

The WH equations are in this case given by:
[

rx[0] rx[1]
rx[1] rx[0]

] [
h[0]
h[1]

]
=

[
rx[k]

rx[k + 1]

]

Solving this 2× 2 linear system gives:
[

h[0]
h[1]

]
=

1
r2
x[0]− r2

x[1]

[
rx[0]rx[k]− rx[1]rx[k + 1]
rx[0]rx[k + 1]− rx[1]rx[k]

]

The auto-correlation function for the given AR model was calculated in Example 2.1:

rx[0] ≈ 8.85 , rx[1] ≈ 7.81 , rx[2] ≈ 5.52 , rx[3] ≈ 2.81 , rx[4] ≈ 0.35 . . .

Inserting these values into the expression for the optimal filter coefficients yields for k = 1:

{h[0], h[1]}k=1 = {1.5,−0.7}
Thus, the optimal one-step ahead predictor is given by

x̂[n + 1] = 1.5x[n]− 0.7x[n− 1] .

This is an intuitively appealing result, as seen by rewriting the AR model as

x[n + 1] = 1.5x[n]− 0.7x[n− 1] + e[n + 1] .

At time n we have no information about e[n+1], so the best is to replace it with its mean, which is zero.
This results in our optimal predictor. The prediction error is in this case simply the white noise e[n + 1],
and the minimum MSE is:

MSEk=1 = 8.85− 1.5 · 7.81 + 0.7 · 5.52 = 1.00

as expected.
For k = 3 we get the filter coefficients:

{h[0], h[1]}k=3 = {1.28,−2.31}
The optimal three-step ahead predictor is therefore given by:

x̂[n + 3] = 1.28x[n]− 2.31x[n− 1] .

The minimum MSE is now obtained as:

MSEk=3 = 8.85− 1.28 · 2.81 + 2.31 · 0.35 = 6.06 ,

which is considerably higher than for k = 1. This is not surprising; prediction is of course more difficult
the longer the prediction horizon is. 2

4.2 Non-causal IIR Wiener Filters

The FIR filter is limited in the sense that its impulse response is required to be finite. One can expect
that an IIR (Infinite Impulse Response) filter can give more flexibility, and thus smaller MSE. The most
flexible case is when the estimate d̂[n] is allowed to depend on all possible data:

d̂[n] =
∞∑

k=−∞
h[k]x[n− k]
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Thus, H(z) is the non-causal IIR filter

H(z) =
∞∑

k=−∞
h[k]z−k

In this case, the W-H equations are infinitely many, and they depend on an infinite set of unknowns:

∞∑

k=−∞
h[k]rx[l − k] = rdx[l] , −∞ < l < ∞ .

The solution is easily obtained by transforming the W-H equations to the frequency domain. Note that
the term on the left-hand side is the convolution of h[k] and rx[k]. By taking the Z-transform, this is
converted to multiplication:

H(z)Px(z) = Pdx(z) .

Recall that Px(ejω) is the DTFT of rx[k], so Px(z) is the Z-transform. Likewise, Pdx(z) denotes the
Z-transform of the cross-correlation rdx[n]. The optimal non-causal IIR filter is now easily obtained as

Hnc(z) =
Pdx(z)
Px(z)

If desired, the impulse response coefficients can be computed by inverse Z-transform.
An interesting special case is obtained if x[n] = s[n] + w[n], where s[n] and w[n] are uncorrelated, and
d[n] = s[n]. Then, it follows that

Px(z) = Ps(z) + Pw(z) , Pdx(z) = Ps(z) ,

and the non-causal LMMSE estimate becomes (in the DTFT-domain)

Hnc(ejω) =
Ps(ejω)

Ps(ejω) + Pw(ejω)
=

SNR(ω)
SNR(ω) + 1

,

where SNR(ω) = Ps(ejω)/Pw(ejω) is the Signal-to-Noise Ratio at the frequency ω. The nice interpreta-
tion is that the optimal filter should be Hnc(ejω) ≈ 1 at those frequencies where the SNR is high, and
Hnc(ejω) ≈ 0 where the SNR is poor. When Ps(ejω) = Pw(ejω), which corresponds to 0 dB SNR, the
filter should have a gain of about -6 dB. Also note that Hnc(ejω) is purely real in this case, i.e. there
is no phase distortion. This is of course possible only for a non-causal filter. However, in contrast to
the analog case, non-causal digital filters can in fact be implemented in practice, just not in real time.
Given a pre-recorded batch of data, the transfer function Hnc(ejω) can, for example, be applied in the
frequency domain, by first taking the DTFT of {x[n]}. The filtering will suffer from end effects (at both
sides!) due to the finiteness of data. To optimally deal with initial effects requires the Kalman filter.
Once the optimal filter is found, the minimum MSE is computed by

MSE(Hnc(z)) = rd[0]−
∞∑

k=−∞
rdx[k]hnc[k]

=
1
2π

∫ π

−π

[
Pd(ejω)−Hnc(ejω)P ∗dx(ejω)

]
dω .

4.3 Causal IIR Wiener Filters

While the non-causal IIR Wiener filter yields the smallest possible MSE, it is not implementable in
real-time. In the causal IIR Wiener filter, the signal estimate depends only on past measurements:

d̂[n] =
∞∑

k=0

h[k]x[n− k]



Theory: Digital Spectral Analysis and Optimal Filtering, MVE 135 21

Thus, H(z) is the causal IIR filter

H(z) =
∞∑

k=0

h[k]z−k

The W-H equations are now given by

∞∑

k=0

h[k]rx[l − k] = rdx[l] , 0 ≤ l < ∞ .

Since the value of the left-hand side is unspecified for l < 0, a direct Z-transform (or DTFT) can no
longer be applied. Instead, a more elaborate procedure, similar to the derivation in [1], pp. 432-434, for
the continuous-time case is required. We use a slightly different technique, which is based on introducing
a non-causal ”dummy” sequence nc[l], which is added to the right-hand side of the W-H equations:

∞∑

k=0

h[k]rx[l − k] = rdx[l] + nc[l] , −∞ < l < ∞ ,

where nc[l] = 0 for l ≥ 0. Now, we can take the Z-transform, which results in

Hc(z) =
Pdx(z) + NC(z)

Px(z)

We must now select the non-causal transfer function NC(z) so that Hc(z) becomes causal. Towards this
goal, the spectrum of x[n] is factorized as

Px(z) = Q(z)Q(z−1) ,

where the spectral factor Q(z) is causal (it has all of its zeros inside the unit circle), whereas Q(z−1) is
anti-causal. This process is known as spectral factorization, and it is always possible because Px(ejω) is
real-valued and non-negative. The causal IIR Wiener filter is now expressed as

Hc(z) =
1

Q(z)
Pdx(z) + NC(z)

Q(z−1)
.

The next step is to split Pdx(z)/Q(z−1) into its causal and anti-causal parts:

Pdx(z)
Q(z−1)

=
[

Pdx(z)
Q(z−1)

]

+

+
[

Pdx(z)
Q(z−1)

]

−
.

It is now clear that the anti-causal dummy filter NC(z) should be chosen as

NC(z) = −Q(z−1)
[

Pdx(z)
Q(z−1)

]

−
.

Inserting this into the Wiener filter formula shows that the optimal causal IIR Wiener filter is given by

Hc(z) =
1

Q(z)

[
Pdx(z)
Q(z−1)

]

+

.

The minimum MSE is again obtained as

MSE(Hc(z)) = rd[0]−
∞∑

k=−∞
rdx[k]hnc[k]

=
1
2π

∫ π

−π

[
Pd(ejω)−Hc(ejω)P ∗dx(ejω)

]
dω .
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Relations among the minimum MSEs In general, the minimum MSEs for the different types of
Wiener filters satisfy the following relations

MSE(hFIR) ≥ MSE(Hc(z)) ≥ MSE(Hnc(z)) .

However, as the length of the FIR filter tends to infinity, we have MSE(hFIR) → MSE(Hc(z)). Thus,
for ”large enough” values of p, the difference between the two is negligible. The difference between Hc(z)
and Hnc(z) is mainly due to the phase. Both can approximate any amplitude characteristic arbitrarily
well, but Hnc(z) is bound to be causal, which generally introduces a time-delay and possibly also other
phase distortions.
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