Written test for examination in MVE135
Random processes with applications, 2008-08-18, 08:30-12:30, house V.
On duty: Rossitza Dodunekova, 7723534.
Time of visits 10:00 and 11:30.
Allowed material: The handbook Beta, Collection of Formulas for MVE135, calculators approved by Chalmers.

There are 30 total points in the examination. One needs 14 points for grade 3 (to pass), 18 points for grade 4 , and 24 points for grade 5.

Problem 1. In pulse amplitude modulation (PAM), a PAM word consists of a sequence of pulses, where each pulse may take on a given number of amplitude levels. If each PAM word, four pulses long, is equally likely to occur and each pulse can have one of three levels $\{0,1,2\}$, what is the probability of a PAM word occurring with exactly two pulses of level 1?

Problem 2. X and Y are independent Gaussian random variables with expectation 0 and variance 1.
(a) Evaluate $P(X<Y)$. $3 p$

For a fixed constant θ, consider the random variables

$$
U=X \cos \theta-Y \sin \theta, \quad V=X \sin \theta+Y \cos \theta
$$

(b) Why are U and V jointly Gaussian? 3p
(c) What is the distribution of $U^{2}+V^{2}$? 3p

Problem 3. The number X of electrons counted by a receiver in an optical communication system is a Poisson random variable with rate λ, when a signal is present, and with rate $\lambda_{0}<\lambda$, when a signal is absent. Suppose that a signal is present with probability p.
(a) Compute the expected value of the electrons counted.
(b) Suppose the receiver uses the following decision rule:

$$
\text { If } X>t \text {, decide signal present, otherwise, decide signal absent. }
$$

Find the error probability of the above decision rule.
Problem 4. A WSS random process with a $\operatorname{PSD} S_{X}(f)=\frac{1}{1+f^{2}}$ is input to a filter. The filter is to be designed so that the output process is white, i.t., has a constant PSD. Find the transfer function of the whitening filter for this input process. Be sure that the filter is causal. $4 p$

Problem 5. Let $Y_{n}=X_{n}+\beta X_{n-1}$, where $\left\{X_{n}\right\}$ is a zero-mean, first-order autoregressive process with autocorrelation

$$
R_{X}(k)=\sigma^{2} \alpha^{|k|}, \quad|\alpha|<1
$$

Compute the power spectral density functions of X and Y.

Problem 6. The spectrum of a stationary stochastic process is to be estimated from the following data:

$$
x[n]=\{0.6,-0.7,0.2,0.3\} .
$$

Due to the small sample support, a simple $\operatorname{AR}(1)$-model is exploited:

$$
x[n]+a_{1} x[n-1]=e[n] .
$$

Determine estimates of the AR-parameter a_{1} and the white noise variance σ_{e}^{2}. Based on these, give a parametric estimate of the spectrum $P_{X}\left(e^{j \omega}\right)$.

