RANDOM PROCESSES WITH APPLICATIONS 2009
 HOMEWORK 1

This assignment is optional. It gives two bonus points to the written examination, when the submitted solution collects 9 points or more out of a total of 16 points.

Day assigned: September 3
Due date: September 18, 15:15

Problem 1. Three people each write down in a random order and independently the numbers $1,2, \ldots 10$.
(a) Compute the probability that they all have the same number in the first position. 1 p
(b) Give a formula of the probability that there isn't a position with the same numbers in it. 2p
Hint. Use the inclusion-exclusion formula.

Problem 2. A binary information source (e.g., a fax machine) generates long strings of 0_{s} followed by 1 , where the symbols are independent and $P\{$ symbol $=0\}=(1 / 2)^{1 / M}$. Here $M=2^{m}$ and m is a fixed positive integer. Let the random variable X denote the length of the runs of 0_{s} between consecutive 1_{s}. This length is encoded as follows. Let $X=n$.

- Express n as a multiple of M and a reminder r, that is, find k and r such that

$$
n=k M+r, \quad 0 \leq r \leq M-1
$$

- Encode the value n into a codeword that contains a prefix consisting of $k 0_{s}$ followed by 1 , and a suffix consisting of the m-bit representation of the reminder r.
Reminder. Existence of the m-bit representation of the reminder can be seen from the fact that there is one-to-one mapping between the 2^{m} different values of the reminder and the 2^{m} different binary vectors of length m.

From the binary string obtained the decoder can deduce the value n.
(a) Let the random variable K denote the length of the prefix. Find the distribution of K.

$$
1 \mathrm{p}
$$

(b) Let the random variable N denote the length of a codeword. Find $E[N]$. 1p
(c) Find the compression ratio, which is defined as the ratio of the average length of runs including the final 1 and the average length of a codeword.

Problem 3. A binary transmission channel introduces independent bit errors with probability 0.15 . Estimate the probability that there are 20 or fewer errors in 100 bit transmissions. 2 p Hint. Use the Central Limit Theorem.

Problem 4. Two random variables X and Y are jointly Gaussian with mean vector and covariance matrix given by

$$
\mathbf{m}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad \mathbf{C}=\left[\begin{array}{cc}
4 & -4 \\
-4 & 9
\end{array}\right]
$$

respectively.
(a) Find the correlation coefficient between X and Y.
(b) Use matrix operations to find the covariance matrix of $Z=2 X+Y$ and $W=X-2 Y$.
(c) Find the PDF of Z.

1p

Problem 5. The random variables X and Y are sample of a random signal at two time instants. Suppose they are independent and zero-mean Gaussian with the same variance. When signal " 0 " is present the variance is σ_{0}^{2}; when signal " 1 " is present the variance is $\sigma_{1}^{2}>\sigma_{0}^{2}$. Suppose signals " 0 " and " 1 " occur with probabilities p and $1-p$, respectively. Let $R^{2}=X^{2}+Y^{2}$ be the total energy of the observations.
(a) Find the PDF of R^{2}.
(b) Suppose we use the following "signal detection" rule: If $R^{2}>T$, then we decide signal " 1 " is present; otherwise we decide signal " 0 " is present. Find an expression for the probability of detection error in terms of T.

