Written test for the examination
"Random Processes with Applications", 2009-10-22, 14:00-18:00
On duty: Rossitza Dodunekova 7723534.
Allowed material: The handbook Beta, Collection of formulas for MVE135, calculators approved by Chalmers.

There are 30 total points in the examination. One needs 14 points for grade 3 (to pass), 18 points for grade 4 , and 24 points for grade 5.

Problem 1. Suppose Z_{1}, Z_{2}, and Z_{3} are independent Gaussian random variables with expectation zero and variance one. What is the distribution of $Z_{4}=3 / 5 Z_{1}+4 / 5 Z_{2}$? Write the joint probability density function of Z_{1} and Z_{4}. Show that $P\left\{Z_{1}<Z_{3}\right\}=1 / 2$.

Problem 2. The input to a communication channel is a random variable X with equiprobable values -1 and 1 . The output of the channel is the random variable $Y=X+N$, where the noise random variable N is independent of X and has Gaussian distribution with mean zero and variance one. Find the probability density function of the output. Suppose you observe a negative output and have to decide whether the input was 1 or -1 . What would your choice be?

Problem 3. Messages arrive in a multiplexer according to a Poisson process of rate λ messages per second.
(a) Suppose it is known that exactly one message has arrived in the time interval $\left[0, t_{0}\right]$. Find the probability density function of the arrival time.
(b) Assume $\lambda=10$. Use the Central Limit Theorem to estimate the probability for more then 640 messages in one minute.

Problem 4. Let $Y_{n}=X_{n}+\beta X_{n-1}$, where $\left\{X_{n}\right\}$ is a zero-mean, first-order autoregressive process with autocorrelation

$$
R_{X}(k)=\sigma^{2} \alpha^{|k|}, \quad|\alpha|<1
$$

Compute the power spectral density of Y. Find a value of β for which $\left\{Y_{n}\right\}$ is the white noise process.

Problem 5. Y_{n} is a wide sense stationary process defined as

$$
Y_{n}=\frac{1}{2} Y_{n-1}+X_{n},
$$

where X_{n} is the white-noise process of average power 1. Compute the autocorrelation function of Y_{n}. Find the unite impulse response of the filter producing the best linear predictor of Y_{n} from Y_{n-2} and Y_{n-3} and compute the mean-square estimation error.

