Supplementary Exercises:

Spectral Analysis and Optimal Filtering

Random Processes With Applications (MVE 135)

Mats Viberg
Department of Signals and Systems
Chalmers University of Technology
41296 Göteborg, Sweden
Email: viberg@chalmers.se

Oct. 2007

Problems

1. We wish to estimate the spectrum of a stationary stochastic process using the method of averaged periodograms. The analog signal is sampled at a sampling frequency of 1 kHz . Suppose a frequency resolution of 1 Hz and a relative variance of 1% is desired for the estimated spectrum. How long time (in seconds) does it take to collect the required data?
2. It is desired to estimate the spectrum of a stationary continuous-time stochastic process $\left\{x_{a}(t)\right\}$. An ideal lowpass filter with $F_{p}=5 \mathrm{kHz}$ is first applied to $\left\{x_{a}(t)\right\}$. The signal is then sampled, and a total of 10 s of data is collected. The spectrum is estimated by averaging non-overlapping periodograms. The periodogram lengths are selected to give a frequency resolution of approximately 10 Hz . Emilia uses a sampling frequency of $F_{s}=10 \mathrm{kHz}$, whereas Emil suggests that $F_{s}=100 \mathrm{kHz}$ should give a lower variance of the spectrum estimate, since more data is obtained. Determine the normalized variance for the two choices of F_{s}, and investigate if Emil is right!
3. Let $x[n]$ be a stationary stochastic process. Suppose the spectrum is estimated as

$$
\hat{P}_{x}\left(e^{j \omega}\right)=\sum_{n=-100}^{100} \hat{r}_{x}[n] w[n] e^{-j \omega n}
$$

where

$$
w[n]= \begin{cases}e^{-0.1|n|} & ;|n| \leq 100 \\ 0 & ; n>100\end{cases}
$$

and $\hat{r}_{x}[n]$ is based on $N=10000$ samples.
Determine the approximate normalized variance

$$
\nu=\frac{\operatorname{Var}\left(\hat{P}_{x}\left(e^{j \omega}\right)\right)}{P_{x}^{2}\left(e^{j \omega}\right)}
$$

4. Consider the following three signal models:

$$
\begin{aligned}
& x[n]+0.6 x[n-1]-0.2 x[n-2]=e[n] \\
& x[n]=e[n]+0.8 e[n-1]+0.2 e[n-2] \\
& x[n]+0.8 x[n-1]=e[n]-0.2 e[n-1]
\end{aligned}
$$

where $e[n]$ is a zero-mean white noise with variance $\sigma_{e}^{2}=1$. Determine the autocorrelation function $r_{x}[k]$ and the spectrum $P_{x}\left(e^{j \omega}\right)$ for each of the cases!
5. The spectrum of a stationary stochastic process is to be estimated from the data:

$$
x[n]=\{0.6,-0.7,0.2,0.3\} .
$$

Due to the small sample support, a simple AR(1)-model is exploited:

$$
x[n]+a_{1} x[n-1]=e[n] .
$$

Determine estimates of the AR-parameter a_{1} and the white noise variance σ_{e}^{2}. Based on these, give a parametric estimate of the spectrum $P_{x}\left(e^{j \omega}\right)$!
6. We wish to estimate an Auto-Regressive model for a measured signal $x[n]$. The covariance function is estimated based on $N=1000$ data points as

$$
\hat{r}_{x}(0)=7.73, \quad \hat{r}_{x}(1)=6.80, \quad \hat{r}_{x}(2)=4.75, \quad \hat{r}_{x}(3)=2.36, \quad \hat{r}_{x}(4)=0.23
$$

Use the Yule-Walker method to estimate a model

$$
x[n]+a_{1} x[n-1]+a_{2} x[n-2]=e[n]
$$

for the signal, where $e[n]$ is white noise. Also give an estimate of the noise variance σ_{e}^{2} !
7. We are given a noise-corrupted measurement $x[n]$ of a desired signal $d[n]$. The observed signal is thus modeled by

$$
x[n]=d[n]+w[n] .
$$

Suppose $w[n]$ is white noise with variance $\sigma_{w}^{2}=1$. The desired signal is represented by the low-pass AR-model

$$
d[n]=0.9 d[n-1]+e[n],
$$

where $e[n]$ is white noise with variance σ_{e}^{2}. An estimate of the desired signal is generated by filtering the measurement as

$$
\hat{d}[n]=h_{0} x[n]+h_{1} x[n-1] .
$$

Determine h_{0} and h_{1} such that $E\left[(d[n]-\hat{d}[n])^{2}\right]$ is minimized. Then sketch the amplitude characteristics of the resulting filter $h_{0}+h_{1} z^{-1}$ for σ_{e}^{2} "small", "medium" and "large", respectively. Explain the result!
8. The goal of this problem is to equalize a communication channel using an FIR Wiener filter. The desired signal $d[n]$ is described as

$$
d[n]-0.8 d[n-1]=e[n],
$$

where $e[n]$ is zero-mean white noise with variance $\sigma_{e}^{2}=1$. The measured signal $x[n]$ is given by

where $v[n]$ is a zero-mean white noise with variance $\sigma_{v}^{2}=0.1$. Determine a filter

$$
\hat{d}[n]=w_{0} x[n]+w_{1} x[n-1]
$$

so that $E\left[(d[n]-\hat{d}[n])^{2}\right]$ is minimized!
9. A 2:nd order digital FIR notch filter can be designed by placing the zeros at $e^{ \pm j \omega}$. The resulting transfer function is

$$
H(z)=1-2 \cos \omega z^{-1}+z^{-2}
$$

Thus, a natural approach for estimating the frequency of a sine-wave is to apply a constrained FIR filter

$$
W(z)=1-w z^{-1}+z^{-2}
$$

to the measured signal, and select w such that the output power is minimized. The frequency could then be estimated as $\omega=\arccos \frac{w}{2}$, provided $|w|<2$. Now, suppose the measured signal is

$$
x[n]=A \cos \left(\omega_{0} n+\varphi\right)+v[n],
$$

where φ is a $U(0,2 \pi)$ random phase and $v[n]$ is a zero-mean stationary white noise. The filter output is given by

$$
y[n]=x[n]-w x[n-1]+x[n-2] .
$$

Find the w that minimizes $E\left[y^{2}[n]\right]$, and compute $\hat{\omega}=\arccos \frac{w}{2}$. Then, prove that $\hat{\omega}=\omega_{0}$ for $\sigma_{v}^{2}=0$, but that the estimate is otherwise biased.

Solutions to Selected Problems

1. In the method of periodogram averaging (Bartlett's method), the available N samples are split into $K=N / M$ non-overlapping blocks, each of length M samples. The periodogram for each sub-block is computed, and the final estimate is the average of these. The variance of each sub-periodogram is

$$
\operatorname{Var}\left\{\hat{P}_{p e r}^{(i)}\left(e^{j \omega}\right)\right\} \approx P_{x}^{2}\left(e^{j \omega}\right)
$$

Thus, the normalized variance is

$$
\frac{\operatorname{Var}\left\{\hat{P}_{p e r}^{(i)}\left(e^{j \omega}\right)\right\}}{P_{x}^{2}\left(e^{j \omega}\right)} \approx 1
$$

or 100%. Assuming the sub-periodograms to be uncorrelated, averaging reduces the normalized variance to

$$
\frac{\operatorname{Var}\left\{\hat{P}_{B}\left(e^{j \omega}\right)\right\}}{P_{x}^{2}\left(e^{j \omega}\right)} \approx 1 / K
$$

To achieve a normalized variance of $0.01(1 \%)$ thus requires averaging $K \geq 100$ sub-periodograms. Each sub-periodogram has the approximate frequency resolution $\Delta \omega \approx 2 \pi / M$, or $\Delta f \approx 1 / M$. In un-normalized frequency this becomes $\Delta F \approx F_{s} / M \mathrm{~Hz}$. With $F_{s}=1000$ and a desired frequency resolution of $\Delta F \leq 1 \mathrm{~Hz}$, the length of each sub-block must be $M \geq 1000$. Together with $K \geq 100$, this shows that the number of available samples must be $N=K M \geq 10^{5}$. At 1 kHz , the data collection takes at least 100 seconds.
3. For Blackman-Tukey's method, the normalized variance is given by

$$
\nu=\frac{\operatorname{Var}\left\{\hat{P}_{B T}\left(e^{j \omega}\right)\right\}}{P_{x}^{2}\left(e^{j \omega}\right)} \approx \frac{1}{N} \sum_{k=-M}^{M} w_{l a g}^{2}[k],
$$

where $w_{\text {lag }}[k]$ is the lag window. In this case we get

$$
\sum_{k=-M}^{M} w_{l a g}^{2}[k]=\sum_{k=-100}^{100} e^{-0.2|k|}=2 \sum_{k=0}^{100} e^{-0.2 k}-1=2 \frac{1-e^{-200}}{1-e^{-0.2}}-1 \approx 10
$$

Thus, the normalized variance is $\nu=10 / N=10^{-3}$.
4. The first model is an $\operatorname{AR}(2)$-process:

$$
x[n]+0.6 x[n-1]-0.2 x[n-2]=e[n]
$$

Multiplying by $x[n-k], k \geq 0$, and taking expectation leads to the relation

$$
r_{x}[k]+0.6 r_{x}[k-1]-0.2 r_{x}[k-2]=\sigma_{e}^{2} \delta[k]
$$

(Yule-Walker). With $k=\{0,1,2\}$, we get three equations in three unknowns (see also the theory complement):

$$
\left[\begin{array}{ccc}
1 & 0.6 & -0.2 \\
0.6 & 1-0.2 & 0 \\
-0.2 & 0.6 & 1
\end{array}\right]\left[\begin{array}{l}
r_{x}[0] \\
r_{x}[1] \\
r_{x}[2]
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Solving this, for example using Matlab, leads to $r_{x}[0]=2.4, r_{x}[1]=-1.8$ and $r_{x}[2]=1.6$. We can then continue for $k=3,4, \ldots$ to get the autocorrelation at any lag, for example,

$$
r_{x}[3]=-0.6 r_{x}[2]+0.2 r_{x}[1]=-1.3, \quad r_{x}[4]=-0.6 r_{x}[3]+0.2 r_{x}[2]=1.1
$$

It is of course also possible to solve the homogenous difference equation

$$
r_{x}[k]+0.6 r_{x}[k-1]-0.2 r_{x}[k-2]=0,
$$

with the given "initial conditions", to give the general solution. The spectrum of the AR model is given by
$P_{x}\left(e^{j \omega}\right)=\frac{\sigma_{e}^{2}}{\left|A\left(e^{j \omega}\right)\right|^{2}}=\frac{1}{\left(1+0.6 e^{-j \omega}-0.2 e^{-j 2 \omega}\right)\left(1+0.6 e^{j \omega}-0.2 e^{j 2 \omega}\right)}=\frac{1}{1.4+0.96 \cos \omega-0.4 \cos 2 \omega}$
The second model is an MA(2) process:

$$
x[n]=e[n]+0.8 e[n-1]+0.2 e[n-2]
$$

In this case, the autocorrelation function is finite. First, multiply by $x[n]$ and take expectation, which leads to

$$
r_{x}[0]=E\left\{(e[n]+0.8 e[n-1]+0.2 e[n-2])^{2}\right\}=\left(1+0.8^{2}+0.2^{2}\right) \sigma_{e}^{2}=1.68
$$

Next, multiply by $x[n-1]$ and take expectation:
$r_{x}[1]=E\{(e[n]+0.8 e[n-1]+0.2 e[n-2])(e[n-1]+0.8 e[n-2]+0.2 e[n-3])\}=(0.8+0.2 \times 0.8) \sigma_{e}^{2}=0.96$.
Finally, multiplying by $x[n-2]$ and taking expectation leads to

$$
r_{x}[1]=E\{(e[n]+0.8 e[n-1]+0.2 e[n-2])(e[n-2]+0.8 e[n-3]+0.2 e[n-4])\}=0.2 .
$$

Multiplying by $x[n-k], k>2$ and taking expectation wee see that $r_{x}[k]=0,|k|>2$. The spectrum of the MA process is given by
$P_{x}\left(e^{j \omega}\right)=\sigma_{e}^{2}\left|B\left(e^{j \omega}\right)\right|^{2}=\left(1+0.8 e^{-j \omega}+0.2 e^{-j 2 \omega}\right)\left(1+0.8 e^{j \omega}+0.2 e^{j 2 \omega}\right)=1.68+1.92 \cos \omega+0.4 \cos 2 \omega$
The third model is the $\operatorname{ARMA}(1,1)$ process:

$$
x[n]+0.8 x[n-1]=e[n]-0.2 e[n-1]
$$

In general, computing the autocorrelation function for an ARMA model is quite difficult. However, in the $\operatorname{ARMA}(1,1)$ case the following procedure is easiest. First, multiply by $x[n-1]$ and take expectation, which gives:

$$
r_{x}[1]+0.8 r_{x}[0]=-0.2 \sigma_{e}^{2} .
$$

Second, square the ARMA model equation and again take expectation:

$$
E\left\{(x[n]+0.8 x[n-1])^{2}\right\}=E\left\{(e[n]-0.2 e[n-1])^{2}\right\}
$$

This leads to

$$
1.64 r_{x}[0]+1.6 r_{x}[1]=1.04 \sigma_{e}^{2}
$$

Now we have two equations in the two unknowns $r_{x}[0]$ and $r_{x}[1]$:

$$
\left[\begin{array}{cc}
0.8 & 1 \\
1.64 & 1.6
\end{array}\right]\left[\begin{array}{l}
r_{x}[0] \\
r_{x}[1]
\end{array}\right]=\left[\begin{array}{c}
-0.2 \\
1.04
\end{array}\right]
$$

Applying the usual formula for inverting a 2×2 matrix, the solution is easily obtained as

$$
\left[\begin{array}{l}
r_{x}[0] \\
r_{x}[1]
\end{array}\right]=\frac{1}{0.8 \times 1.6-1 \times 1.64}\left[\begin{array}{cc}
1.6 & -1 \\
-1.64 & 0.8
\end{array}\right]\left[\begin{array}{r}
-0.2 \\
1.04
\end{array}\right] \approx\left[\begin{array}{r}
3.8 \\
-3.2
\end{array}\right]
$$

The remaining auto-correlation parameters can be obtained by multiplying the ARMA equation by $x[n-k], k \geq 2$ and taking expectation:

$$
r_{x}[k]+0.8 r_{x}[k-1]=0, k \geq 2
$$

Thus, $r_{x}[2]=-0.8 r_{x}[1] \approx 2.6$ etc. In general, $r_{x}[k]=(-0.8)^{k-1} r_{x}[1]=(-0.8)^{k-1}(-3.2)$ for $k \geq 2$. The spectrum of the ARMA model is given by

$$
P_{x}\left(e^{j \omega}\right)=\sigma_{e}^{2} \frac{\left|B\left(e^{j \omega}\right)\right|^{2}}{\left|A\left(e^{j \omega}\right)\right|^{2}}=\frac{\left(1-0.2 e^{j \omega}\right)\left(1-0.2 e^{-j \omega}\right)}{\left(1+0.8 e^{j \omega}\right)\left(1+0.8 e^{-j \omega}\right)}=\frac{1-0.4 \cos \omega}{1+1.6 \cos \omega}
$$

5. The Yule-Walker method gives the estimate

$$
\hat{a}_{1}=-\hat{r}_{x}[0]^{-1} \hat{r}_{x}[1] .
$$

With the given data, the sample autocorrelation function is calculated as

$$
\hat{r}_{x}[0]=\frac{1}{4}\left(0.6^{2}+0.7^{2}+0.2^{2}+0.3^{2}\right)=0.245
$$

and

$$
\hat{r}_{x}[1]=\frac{1}{4}(0.6 \times(-0.7)+(-0.7) \times 0.2+0.2 \times 0.3)=-0.125
$$

Thus, we get

$$
\hat{a}_{1}=\frac{0.125}{0.245} \approx 0.51
$$

The noise variance estimate follows as

$$
\hat{\sigma}_{e}^{2}=\hat{r}_{x}[0]+\hat{a}_{1} \hat{r}_{x}[1] \approx 0.18
$$

7. The optimal filter (in the LMMSE sense) is given by the Wiener-Hopf (W-H) equations:

$$
\sum_{k} h[k] r_{x}[l-k]=r_{d x}[l]
$$

In this case, the filter is a causal FIR filter with two taps (first-order filter):

$$
\hat{d}[n]=h_{0} x[n]+h_{1} x[n-1] .
$$

Thus, the W-H equations are

$$
\sum_{k=0}^{1} h_{k} r_{x}[l-k]=r_{d x}[l], l=0,1
$$

In matrix form, this becomes

$$
\left[\begin{array}{cc}
r_{x}[0] & r_{x}[1] \\
r_{x}[1] & r_{x}[0]
\end{array}\right]\left[\begin{array}{l}
h_{0} \\
h_{1}
\end{array}\right]=\left[\begin{array}{l}
r_{d x}[0] \\
r_{d x}[1]
\end{array}\right]
$$

The measured signal is given by

$$
x[n]=d[n]+w[n] .
$$

The auto-correlation function is then given by

$$
r_{x}[k]=E\{(d[n]+w[n])(d[n-k]+w[n-k])\}=r_{d}[k]+r_{w}[k]
$$

(since $d[n]$ and $w[n]$ are uncorrelated). Now, $w[n]$ is white noise, so $r_{w}[k]=\sigma_{w}^{2} \delta[k]=\delta[k]$. The desired signal is the $\mathrm{AR}(1)$ process:

$$
d[n]-0.9 d[n-1]=e[n] .
$$

To compute the autocorrelation function we use the Yule-Walker equations, which on matrix form become

$$
\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right]\left[\begin{array}{l}
r_{d}[0] \\
r_{d}[1]
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \sigma_{e}^{2} .
$$

Solving this gives

$$
\left[\begin{array}{c}
r_{d}[0] \\
r_{d}[1]
\end{array}\right] \approx\left[\begin{array}{l}
5.26 \\
4.74
\end{array}\right] \sigma_{e}^{2}
$$

Inserting the autocorrelation functions into the W -H equations now gives

$$
\left(\left[\begin{array}{ll}
5.26 & 4.74 \\
4.74 & 5.26
\end{array}\right] \sigma_{e}^{2}+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
h_{0} \\
h_{1}
\end{array}\right]=\left[\begin{array}{l}
5.26 \\
4.74
\end{array}\right] \sigma_{e}^{2}
$$

where we have also used that $r_{d x}[k]=r_{d}[k]$, since $d[n]$ and $w[n]$ are uncorrelated. It is possible, but a bit cumbersome, to solve this 2×2 system for a general σ_{e}^{2}. Instead we take the extreme cases $\sigma_{e}^{2} \rightarrow 0$ and $\sigma_{e}^{2} \rightarrow \infty$ first, and then the intermediate case $\sigma_{e}^{2}=1$. For σ_{e}^{2} very small we have

$$
\left[\begin{array}{l}
h_{0} \\
h_{1}
\end{array}\right] \rightarrow\left[\begin{array}{l}
5.26 \\
4.74
\end{array}\right] \sigma_{e}^{2} \rightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Thus, when the SNR is very low, the estimation is $\hat{d}[n]=0$. For very large σ_{e}^{2} we have instead

$$
\left[\begin{array}{ll}
5.26 & 4.74 \\
4.74 & 5.26
\end{array}\right]\left[\begin{array}{l}
h_{0} \\
h_{1}
\end{array}\right]=\left[\begin{array}{l}
5.26 \\
4.74
\end{array}\right]
$$

which gives the optimal FIR coefficients as

$$
\left[\begin{array}{l}
h_{0} \\
h_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Thus, in the high SNR case we take $\hat{d}[n]=x[n]$, i.e. no filtering is necessary. For the intermediate case $\sigma_{e}^{2}=1$ we get

$$
\left[\begin{array}{ll}
6.26 & 4.74 \\
4.74 & 6.26
\end{array}\right]\left[\begin{array}{l}
h_{0} \\
h_{1}
\end{array}\right]=\left[\begin{array}{l}
5.26 \\
4.74
\end{array}\right],
$$

which leads to

$$
\left[\begin{array}{l}
h_{0} \\
h_{1}
\end{array}\right]=\left[\begin{array}{l}
0.63 \\
0.28
\end{array}\right] .
$$

The estimate is then $\hat{d}[n]=0.62 x[n]+0.28 x[n-1]$, corresponding to the transfer function

$$
H\left(e^{j \omega}\right)=0.62+0.28 e^{-j \omega}
$$

This is a low-pass filter with DC gain $H\left(e^{j 0}\right)=0.62+0.28=0.9$, and 3 dB cutoff frequency $f_{c} \approx 0.25$ "per samples". The filter is an optimal compromise for removing as much noise (which has a flat spectrum) as possible, without distorting the signal (which is low-pass) too much.

