Problem 1. In pulse amplitude modulation (PAM), a PAM word consists of a sequence of pulses, where each pulse may take on a given number of amplitude levels. Suppose a PAM word is n pulses long and each pulse may take on m different levels. If each PAM word, four pulses long, is equally likely to occur and each pulse can have one of three levels $\{a, b, c\}$, what is the probability of a PAM word occurring with exactly two pulses of level c ?

Solution

There are $3^{4}=81$ different PAM words. Of these, $\binom{4}{2} \times 2^{2}=24$ words have exactly two pulses of level c.

$$
P(2 \text { ones })=\frac{24}{81}=\frac{8}{27} \simeq 0.296
$$

Problem 2. X and Y are independent Gaussian random variables with expectation 0 and variance 1.
(a) Evaluate $P(X<Y)$.

For a fixed constant θ, consider the random variables

$$
U=X \cos \theta-Y \sin \theta, \quad V=X \sin \theta+Y \cos \theta
$$

(b) Why are U and V jointly Gaussian?
(c) What is the distribution of $U^{2}+V^{2}$?

Solution

(a) Since X and Y are independent and equally distributed, and also continuos, we have

$$
P(X<Y)=P(Y<X), \quad P(X<Y)+P(Y<X)=1
$$

Hence $P\left(X<Y=\frac{1}{2}\right.$.
(b) The vector $[U, V]^{T}$ is Gaussian, because it is obtained from the Gaussian vector $[X, Y]^{T}$ by a non-degenerate linear transformation.
(c) Since X and Y are independent Gaussian with mean xero and variance one, $U^{2}+V^{2}$ is a Chi-squared random variable with two degrees of freedom.

Problem 3. The number X of electrons counted by a receiver in an optical communication system is a Poisson random variable with rate λ, when a signal is present, and with rate $\lambda_{0}<\lambda$, when a signal is absent. Suppose that a signal is present with probability p.
(a) Compute the expected value of the electrons counted.
(b) Suppose the receiver uses the following decision rule:

If $X>t$, decide signal present, otherwise, decide signal absent.
Find the error probability of the above decision rule.

Solution

(a)

$$
E[X]=E[X \mid \text { signal present }] p+E[X \mid \text { signal absent }](1-p)=\lambda p+\lambda_{0}(1-p)
$$

(b)

$$
\begin{aligned}
P_{\text {error }} & =P(\text { error } \mid \text { signal present }) p+P(\text { error } \mid \text { signal absent })(1-p) \\
& =P(X \leq t \mid \text { signal present }) p+P(X>t \mid \text { signal absent })(1-p) \\
& =\sum_{k=0}^{t} \frac{\lambda^{k}}{k!} e^{-\lambda} p+\sum_{t+1}^{\infty} \frac{\lambda_{0}^{k}}{k!} e^{-\lambda_{0}}(1-p)
\end{aligned}
$$

Problem 4. A WSS random process with a $\operatorname{PSD} S_{X}(f)=\frac{1}{1+f^{2}}$ is input to a filter. The filter is to be designed so that the output process is white, i.t., has a constant PSD. Find the transfer function of the whitening filter. Be sure that the filter is causal.

Solution

Denote the output process by W. We have $S_{W}(f)=c>0$ and

$$
|H(f)|^{2}=c\left(1+f^{2}\right)=(1+j f) \sqrt{c} \times(1-j f) \sqrt{c}
$$

Thus

$$
H(f)=(1+j f) \sqrt{c}
$$

Problem 5. Let $Y_{n}=X_{n}+\beta X_{n-1}$, where $\left\{X_{n}\right\}$ is a zero-mean, first-order autoregressive process with autocorrelation

$$
R_{X}(k)=\sigma^{2} \alpha^{|k|}, \quad|\alpha|<1 .
$$

Compute the power spectral density functions of X and Y.

Solution

$$
\begin{aligned}
S_{X}(f) & =\sigma^{2} \sum_{-\infty}^{\infty} e^{-j 2 \pi f k} \alpha^{|k|}=\sigma^{2}\left[\sum_{-\infty}^{0} e^{-j 2 \pi f k} \alpha^{-k}+\sum_{0}^{\infty} e^{-j 2 \pi f k} \alpha^{k}-1\right] \\
& =\sigma^{2}\left[\frac{1}{1-\alpha e^{j 2 \pi f}}+\frac{1}{1-\alpha e^{-j 2 \pi f}}-1\right]=\sigma^{2} \frac{1+\alpha^{2}}{1+\alpha^{2}-2 \alpha \cos 2 \pi f}
\end{aligned}
$$

$$
\begin{gathered}
R_{Y}(\tau)=E\left[\left(X_{n+\tau}+\beta X_{n-1+\tau}\right)\left(X_{n}+\beta X_{n-1}\right)\right] \\
=\left(1+\beta^{2}\right) R_{X}(\tau)+\beta\left[R_{X}(\tau+1)+R_{X}(\tau-1)\right] \\
S_{Y}(f)=\left(1+\beta^{2}\right) S_{X}(f)+\beta\left[e^{j 2 \pi f}+e^{-j 2 \pi f}\right] S_{X}(f)=\left(1+\beta^{2}+2 \cos 2 \pi f\right) S_{X}(f)
\end{gathered}
$$

Problem 6. The spectrum of a stationary stochastic process is to be estimated from the following data:

$$
x[n]=\{0,6,-0,7,0,2,0,3\} .
$$

Due to the small sample support, a simple AR(1)-model is exploited:

$$
x[n]+a_{1} x[n-1]=e[n] .
$$

Determine estimates of the AR-parameter a_{1} and the white noise variance σ_{e}^{2}. Based on these, give a parametric estimate of the spectrum $P_{X}\left(e^{j \omega}\right)$.

Solution

The Yule-Walker method gives the estimate

$$
\hat{a}_{1}=-\hat{r}_{x}[0]^{-1} \hat{r}_{x}[1]
$$

With the given data, the sample autocorrelation function is calculated as

$$
\hat{r}_{x}[0]=\frac{1}{4}\left(0.6^{2}+0.7^{2}+0.2^{2}+0.3^{2}\right)=0.245
$$

and

$$
\hat{r}_{x}[1]=\frac{1}{4}(0.6 \times(-0.7)+(-0.7) \times 0.2+0.2 \times 0.3)=-0.125
$$

Thus, we get

$$
\hat{a}_{1}=\frac{0.125}{0.245} \simeq 0.51 .
$$

The noise variance estimate follows as

$$
\hat{\sigma}^{2}=\hat{r}_{x}[0]+\hat{a}_{1} \hat{r}_{x}[1] \simeq 0.18
$$

