Solution to the written test for examination in MVE135
Random processes with applications, 2008-10-23, 14:00-18:00, a house on Hörsalsvägen.

There are 30 total points in the examination. One needs 14 points for grade 3 (to pass), 18 points for grade 4 , and 24 points for grade 5.

Problem 1. A communication channel accepts an arbitrary voltage input V and outputs a voltage

$$
Y=V+N
$$

where N is a Gaussian random variable with mean zero and variance one, independent of the input value. Suppose that the channel is used to transmit binary information as follows:

$$
\begin{array}{ll}
\text { to transmit } 0: & \text { input }-1 \\
\text { to transmit 1: } & \text { input } 1 .
\end{array}
$$

The receiver decides a 0 was sent if the voltage is negative and a 1 otherwise. Find the probability of the receiver making an error if both inputs are equally probable.

Solution.

$$
\begin{aligned}
& P\{\text { error } \mid V=-1\}=P\{Y \geq 0 \mid V=-1\}=P\{-1+N \geq 0\}=P\{N \geq 1\}=Q(1)=0.159 \\
& P\{\text { error } \mid V=1\}=P\{Y<0 \mid V=1\}=P\{1+N<0\}=P\{N<-1\}=Q(1)=0.159
\end{aligned}
$$

By the total probability formula

$$
P\{\text { error }\}=P\{\text { error } \mid V=-1\} P\{V=-1\}+P\{\operatorname{error} \mid V=1\} P\{V=1\}=0.159
$$

Problem 2. The number of bytes in a message is described by a random variable N with $P(N=n)=(1-p) p^{n}, \quad n \geq 0$. The messages are broken into packets of length M bytes. Let Q be the number of full packets in a message and R be the number of bytes left over.
(a) Compute the joint probability mass function of Q and R and the marginal probability mass functions of Q and R.
(b) What is the expected value of Q ? Are Q and R independent?

Solution. The joint PMF of Q and R is
(a)

$$
\begin{aligned}
& P(Q=q, R=r)=P\{N=q M+r\}=(1-p) p^{q M+r} \\
& \text { where } \quad q=0,1, \ldots \quad \text { and } \quad r=0, \ldots M-1
\end{aligned}
$$

The marginal PMFs are obtained from the joint PMF as

$$
\begin{aligned}
& P\{Q=q\}=(1-p) p^{q M} \sum_{r=0}^{M-1} p^{r}=\left(1-p^{M}\right)\left(p^{M}\right)^{q}, \quad q=0,1, \ldots \\
& P\{R=r\}=(1-p) p^{r} \sum_{q=0}^{\infty}\left(p^{M}\right)^{q}=\frac{(1-p) p^{r}}{1-p^{M}}, \quad r=0, \ldots M-1 .
\end{aligned}
$$

(b) Clearly, Q is the geometric random variable and $E[Q]=\frac{p^{M}}{1-p^{M}}$. Since

$$
P\{Q=q, R=r\}=P\{Q=q\} P\{R=r\} \quad \text { for } \quad q=0,1, \ldots \quad \text { and } \quad r=0, \ldots M-1
$$

Q and R are independent.

Problem 3. The random variables X and Y are jointly Gaussian with expectation 0 , variance 1 , and correlation coefficient $\frac{1}{4}$. Find the distribution of $Z=X-a Y$, where a is some nonzero constant. For which value of a is the variance of Z equal to 1 ? For this value, compute $E[Z \mid Z<1]$.

Solution. A linear combination of jointly Gaussian random variables is a Gaussian random variable. Thus Z is Gaussian with

$$
E[Z]=E[X]-E[a Y]=0, \quad \operatorname{Var}(Z)=1+a^{2}-\frac{a}{2} .
$$

$\operatorname{Var}(Z)$ equals 1 when $a\left(a-\frac{1}{2}\right)=0$ or $a=\frac{1}{2}$. In this case Z is a standard normal random variable and we have

$$
f_{Z}(z \mid Z<1)=\frac{f_{Z}(z)}{P\{Z<1\}}[1-u(z-1)]=\frac{\exp \left\{-z^{2} / 2\right\}}{[1-Q(1)] \sqrt{2 \pi}}[1-u(z-1)]
$$

Thus

$$
\begin{aligned}
& E[Z \mid Z<1]=\frac{1}{[1-Q(1)] \sqrt{2 \pi}} \int_{-\infty}^{1} z \exp \left\{-z^{2} / 2\right\} d z \\
& =\frac{1}{[1-Q(1)] \sqrt{2 \pi}}\left[-\left.\exp \left\{-z^{2} / 2\right\}\right|_{-\infty} ^{1}\right]=-\frac{\exp \{-1 / 2\}}{[1-Q(1)] \sqrt{2 \pi}} \\
& E[Z \mid Z<1]=-0.2876
\end{aligned}
$$

Problem 4. $N(t)$ is the Poisson process with parameter λ. Show that its autocovariance function is $C_{N N}\left(t_{1}, t_{2}\right)=\lambda \min \left(t_{1}, t_{2}\right)$ and compute the autocovariance function of the process $e^{-t / 2} N\left(e^{t}\right)$.

Solution. To compute the autocovariance function of $N(t)$ we use the fact that the increments of $N(t)$ are independent and also that $N(0)=0$. Suppose $t_{1} \leq t_{2}$. We have

$$
\begin{aligned}
C_{N N}\left(t_{1}, t_{2}\right) & =\operatorname{Cov}\left(N\left(t_{1}\right), N\left(t_{2}\right)\right)=\operatorname{Cov}\left(N\left(t_{1}\right)-N(0), N\left(t_{2}\right)-N\left(t_{1}\right)+N\left(t_{1}\right)\right) \\
& =\operatorname{Cov}\left(N\left(t_{1}\right)-N(0), N\left(t_{1}\right)\right)=\operatorname{Var}\left(N\left(t_{1}\right)\right)=\lambda t_{1} .
\end{aligned}
$$

Thus for arbitrary t_{1} and t_{2}

$$
C_{N N}\left(t_{1}, t_{2}\right)=\lambda \min \left(t_{1}, t_{2}\right)
$$

Denote $X(t)=e^{-t / 2} N\left(e^{t}\right)$. We have

$$
\begin{aligned}
& C_{X X}\left(t_{1}, t_{2}\right)=\operatorname{Cov}\left(e^{-t_{1} / 2} N\left(e^{t_{1}}\right), e^{-t_{2} / 2} N\left(e^{t_{2}}\right)\right)=e^{-\left(t_{1}+t_{2}\right) / 2} C_{N N}\left(e^{t_{1}}, e^{t_{2}}\right) \\
& =e^{-\left(t_{1}+t_{2}\right) / 2} \lambda \min \left(e^{t_{1}}, e^{t_{2}}\right)=\lambda e^{-\left(t_{1}+t_{2}\right) / 2+\min \left(t_{1}, t_{2}\right)}=\lambda e^{-\left|t_{1}-t_{2}\right| / 2}
\end{aligned}
$$

Problem 5. The input to a linear time invariant system with impulse response

$$
h(t)=\left\{\begin{array}{cc}
8 \delta(t)+1, & \text { if } 0 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

is the random process

$$
X(t)=\sin (2 \pi t+\Theta), \quad-\infty<t<\infty
$$

where Θ is a random variable uniformly distributed over $[0,2 \pi)$. Give a formula for the output process $Y(t)$ and compute the mean function of this process.

Solution. $Y(t)$ is computed as the convolution of the input and the impulse response function.
$Y(t)=\int_{0}^{1}\left[\sin (2 \pi(t-u)+\Theta)[8 \delta(u)+1] d u=8 \sin (2 \pi t+\Theta), \quad\right.$ since $\quad \int_{0}^{1} \sin (2 \pi(t-u)+\Theta) d u=0$.
The mean function $m_{Y}(t)$ is

$$
m_{Y}(t)=m_{X}(t) \int_{0}^{1} h(t) d t=0, \quad \text { since } \quad m_{X}(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (2 \pi t+\theta) d \theta=0 .
$$

Problem 6. Let $X(t)$ be a wide sense stationary process with autocorrelation function $R_{X X}(\tau)$. A new process is formed by multiplying $X(t)$ by a carrier to produce

$$
Y(t)=X(t) \cos \left(\omega_{0} t+\Theta\right)
$$

where ω_{0} is a fixed frequency and Θ is a random variable, which is independent of the process $X(t)$ and uniformly distributed over $[0,2 \pi)$. Compute the power spectral density and the average power of $Y(t)$.

Solution.

$R_{Y Y}(t, t+\tau)=E[X(t) X(t+\tau)] E\left[\cos \left(\omega_{0} t+\Theta\right) \cos \left(\omega_{0}(t+\tau)+\Theta\right)\right]=R_{X X}(\tau) \frac{1}{2} \cos \left(\omega_{0} \tau\right)=R_{Y Y}(\tau)$.
To compute the power spectral density of the process $Y(t)$ we apply above the formula

$$
\mathcal{F}\left\{R_{X X}(\tau) \frac{1}{2} \cos \left(\omega_{0} \tau\right)\right\}=\mathcal{F}\left\{R_{X X}(\tau)\right\} * \mathcal{F}\left\{\frac{1}{2} \cos \left(\omega_{0} \tau\right)\right\}
$$

According to the table on p. 521

$$
\mathcal{F}\left\{\cos \left(\omega_{0} \tau\right)\right\}=\frac{1}{2}\left[\delta\left(f-\frac{\omega_{0}}{2 \pi}\right)+\delta\left(f+\frac{\omega_{0}}{2 \pi}\right)\right]
$$

Then

$$
S_{Y Y}(f)=\frac{1}{4}\left[S_{X X}\left(f-\frac{\omega_{0}}{2 \pi}\right)+S_{X X}\left(f+\frac{\omega_{0}}{2 \pi}\right)\right]
$$

The average power of $Y(t)$ is

$$
R_{Y Y}(0)=\frac{1}{2} R_{X X}(0)
$$

Problem 7. $Y[n]$ is an $\operatorname{AR}(1)$ process defined as

$$
Y[n]=\frac{1}{2} Y[n-1]+e[n],
$$

where $e[n]$ is the white-noise process of average power σ^{2}.
(a) Compute $R_{Y Y}(m)$, the autocorrelation function of $Y[n]$.
(b) Let $\sigma^{2}=3$. Find the unite impulse response of the filter producing the best predictor of $Y[n]$ from $Y[n-2]$ and $Y[n-3]$.
(c) Give a formula for the estimation error.

Solution.

(a) One way to compute the auotcorrelation function of $Y[n]$ is to multiply both parts of the equation defining this process by $Y[n-k], \quad k=0,1, \ldots$ and to take expectation from both sides of the new equations. The gives the following recurent equations for $R_{Y Y}(k)$:

$$
\begin{aligned}
& R_{Y Y}(0)=\frac{1}{2} R_{Y Y}(1)+\sigma^{2} \\
& R_{Y Y}(k)=\frac{1}{2} R_{Y Y}(k-1), \quad k \geq 1 .
\end{aligned}
$$

From the first two equations

$$
\begin{aligned}
& R_{Y Y}(0)=\frac{1}{2} R_{Y Y}(1)+\sigma^{2} \\
& R_{Y Y}(1)=\frac{1}{2} R_{Y Y}(0)
\end{aligned}
$$

we get $R_{Y Y}(0)=\frac{4}{3} \sigma^{2}$ and then

$$
R_{Y Y}(k)=\frac{4}{3} \sigma^{2}\left(\frac{1}{2}\right)^{|k|}, \quad k=0, \pm 1, \ldots
$$

(b) Let $\hat{Y}[n]=z_{2} Y[n-2]+z_{3} Y[n-3]$ be the best predictor. The desired equations follow from the orthogonality condition $Y[n]-\hat{Y}[n] \perp Y[n-2] \quad$ and $\quad Y[n]-\hat{Y}[n] \perp Y[n-3]$:
$z_{2} R_{Y Y}(0)+z_{3} R_{Y Y}(1)=R_{Y Y}(2)$
$z_{2} R_{Y Y}(1)+z_{3} R_{Y Y}(0)=R_{Y Y}(3)$.
With $\sigma^{2}=3$ we have $R_{Y Y}(k)=4\left(\frac{1}{2}\right)^{|k|}$ and the above then gives
$4 z_{2}+2 z_{3}=1$
$2 z_{2}+4 z_{3}=\frac{1}{2}$.
Hence $z_{2}=\frac{1}{4}, \quad z_{3}=0$ and $\hat{Y}[n]=\frac{1}{4} Y[n-2]$.
(c)
$e^{2}=E\left[(Y[n]-\hat{Y}[n])^{2}\right]=E[Y[n](Y[n]-\hat{Y}[n])]=R_{Y Y}(0)-\frac{1}{4} R_{Y Y}(2)=4-\frac{1}{4}=3.75$.

