RANDOM PROCESSES WITH APPLICATIONS 2009
 SOLUTION TO HOMEWORK 2

This assignment is optional. It gives two bonus points to the written examination, when the submitted solution collects 12 points or more out of a total of 16 points.

Day assigned: September 28
Due date: October 5, 15:15

Problem 1. Let X be the number of active speakers in a group of M independent speakers, each one of which is active with probability p. Suppose that a voice transmission system can transmit up to $N<M$ voice signals at a time, and that when X exceeds $N, X-N$ randomly selected signals are discarded. Give a formula for computing the expected value of the discarded voices. Estimate the probability that voices are not discarded if $M=45, p=1 / 3, N=16$.

Solution. We have $X \sim$ is $\operatorname{Binomial}(M, p)$
Let Y denote the number of discarded voices. Then

$$
Y= \begin{cases}0 & \text { if } \quad X \leq N \\ X-N & \text { if } \quad X>N\end{cases}
$$

and

$$
\begin{gathered}
E[Y]=\sum_{j=1}^{M-N} j P\{X=N+j\}=\sum_{j=1}^{M-N} j\binom{M}{N+j} p^{N+j}(1-p)^{M-N-j} \\
P\{Y=0\}=P\{X \leq N\} \approx \Phi\left(\frac{N-M \cdot p}{\sqrt{M p(1-p)}}\right)=\Phi\left(\frac{16-45 \cdot 1 / 3}{\sqrt{45 \cdot 1 / 3 \cdot 2 / 3}}\right)=1-Q(0.31)=0.62
\end{gathered}
$$

Problem 2. The joint PDF of the random variables Z_{1} and Z_{2} is given by

$$
\begin{equation*}
f_{Z_{1}, Z_{2}}\left(z_{1}, z_{2}\right)=\frac{1}{\sqrt{2} \pi} e^{-\left(z_{1}^{2}-\sqrt{2} z_{1} z_{2}+z_{2}^{2}\right)} \tag{2}
\end{equation*}
$$

Compute $\operatorname{Cov}\left(Z_{1}-Z_{2} / \sqrt{2}, Z_{2}\right)$.
Solution. The power of the exponent in the joint PDF can be written as

$$
-\frac{1}{2\left[1-(1 / \sqrt{2})^{2}\right]}\left[z_{1}^{2}+z_{2}^{2}-2 \frac{1}{\sqrt{2}} z_{1} z_{2}\right]
$$

Thus Z_{1} and Z_{2} are jointly Gaussian with

$$
\rho\left(Z_{1}, Z_{2}\right)=\frac{1}{\sqrt{2}}, \quad E\left[Z_{i}\right]=0, \quad \operatorname{Var}\left(Z_{i}\right)=1, \quad i=1,2
$$

and

$$
\operatorname{Cov}\left(Z_{1}-Z_{2} / \sqrt{2}, Z_{2}\right)=\operatorname{Cov}\left(Z_{1}, Z_{2}\right)-\frac{1}{\sqrt{2}} \operatorname{Cov}\left(Z_{2}, Z_{2}\right)=0
$$

Problem 3.

Problem 3. Let $N(t)$ be a Poisson process with parameter α. Suppose each time an event occurs, independently a coin is flipped and the outcome (heads or tails) is recorded. Let $N_{1}(t)$ and $N_{2}(t)$ denote the number of heads and tails recorded up to time t, respectively. Assume that p is the probability of heads.
(a) Compute the conditional probability

$$
P\left\{N_{1}(t)=m, N_{2}(t)=n-m \mid N(t)=n\right\}
$$

where n and m are non-negative integers satisfying $0 \leq m \leq n$.
(b) Compute the joint PMF of $N_{1}(t)$ and $N_{2}(t)$.
(c) Compute the PMF of $N_{1}(t)$ and the PMF of $N_{2}(t)$. Are $N_{1}(t)$ and $N_{2}(t)$ independent?

Solution.

(a) Since the process $N(t)$ and the coin tosses are independent we have

$$
P\left\{N_{1}(t)=m, N_{2}(t)=n-m \mid N(t)=n\right\}=\binom{n}{m} p^{m}(1-p)^{n-m} .
$$

(b)

$$
\begin{aligned}
P\left\{N_{1}(t)=m,\right. & \left.N_{2}(t)=k\right\}=P\left\{N_{1}(t)=m, N_{2}(t)=k \mid N(t)=m+k\right\} P\{N(t)=m+k\} \\
& =\binom{m+k}{m} p^{m}(1-p)^{n-m} \cdot \frac{(\lambda t)^{m+k}}{(m+k)!} e^{-\lambda t} \\
& =\frac{(\lambda t p)^{m}}{m!} e^{-\lambda t p} \cdot \frac{(\lambda t(1-p))^{k}}{k!} e^{-\lambda t(1-p)} .
\end{aligned}
$$

(c) The joint PMF $P_{N_{1}(t), N_{2}(t)}(m, k)$ above is a product of two PMFs

$$
P_{1}(m) \sim \operatorname{Poisson}(\lambda t p) \text { and } P_{2}(k) \sim \operatorname{Poisson}(\lambda t(1-p))
$$

Hence $N_{1}(t)$ and $N_{2}(t)$ are independent and

$$
N_{1}(t) \sim \operatorname{Poisson}(\lambda t p) \text { and } N_{2}(t) \sim \operatorname{Poisson}(\lambda t(1-p))
$$

Problem 4. Consider the random process

$$
Y(t)=(-1)^{X(t)}
$$

where $X(t)$ is a Poisson process with rate λ.
(a) Find the mean-value time function and the autocorrelation function of $Y(t)$. Is the process WSS?
(b) Consider the process $Z(t)=A Y(t)$, where A is a random variable, independent of $Y(t)$ and with equally likely values ± 1. Is $Z(t)$ WSS? Find the power spectral density of $Z(t)$.

Solution. Denote $p_{e}(t)=P\{X(t)$ is even $\}$. We know

$$
p_{e}(t)=\frac{1+e^{-2 \lambda t}}{2} .
$$

(a) Clearly $Y(0)=1$ and for $t>0$ we have

$$
\begin{gathered}
P\{Y(t)=1\}=p_{e}(t), \quad P\{Y(t)=-1\}=1-p_{e}(t) \\
E[Y(t)]=1 \times p_{e}(t)+(-1) \times\left(1-p_{e}(t)=e^{-2 \lambda t}\right.
\end{gathered}
$$

Thus

$$
m_{Y}(0)=1 \quad \text { and } \quad m_{Y}(t)=e^{-2 \lambda t}, \quad t>0
$$

For $t \geq 0$ and $\tau \geq 0$ we have

$$
R_{Y}(t, t+\tau)=E[Y(t) Y(t+\tau)]=1 \cdot p_{e}(\tau)+(-1) \cdot\left(1-p_{e}(\tau)\right)=e^{-2 \lambda \tau}
$$

Hence

$$
R_{Y}(\tau)=e^{-2 \lambda|\tau|}
$$

$Y(t)$ is not WSS, since $m_{Y}(t)$ is not a constant. The process is known as the semirandom telegraph signal because its initial value $Y(0)$ is not random.
(b)

$$
\begin{gathered}
\mu_{Z}(t)=E[Z(t)]=E[A] E[Y(t)]=0 \\
R_{Z}(t, t+\tau)=E\left[A^{2}\right] E[Y(t) Y(t+\tau)]=R_{Y}(\tau)=e^{-2 \lambda|\tau|}
\end{gathered}
$$

$Z(t)$ is WSS. In fact, $Z(t)$ is the random telegraph signal process. Taking the Fourier transform of $R_{z}(\tau)$ we obtain

$$
S_{Z}(f)=\frac{4 \lambda}{4 \lambda+4 \pi^{2} f^{2}}
$$

