Solutions to Chapter 7 Exercises (Part 2)

Problem 7.4

Consider a discrete random variable, $X \in\{-1,0,1\}$, whose PMF is

$$
P_{X}(k)=\left\{\begin{array}{cc}
\epsilon & k= \pm 1 \\
1-2 \epsilon & k=0
\end{array}\right.
$$

For this random variable, $\mu_{X}=0$ and $\sigma_{X}^{2}=2 \epsilon$. Both the sample mean and the median will be unbiased in this case. The variance of these two estimators are as follows:
Sample Mean:

$$
\operatorname{Var}(\hat{\mu})=\frac{\sigma_{X}^{2}}{n}=\frac{2 \epsilon}{n} .
$$

Median: Suppose $n=2 k-1$ samples are taken. Then Y_{k} is the median.

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{k}=1\right) & =\operatorname{Pr}\left(k \text { or more } X^{\prime} s=1\right) \\
& =\sum_{m=k}^{n}\binom{n}{m} \epsilon^{m}(1-\epsilon)^{n-m} \\
\operatorname{Pr}\left(Y_{k}=-1\right) & =\operatorname{Pr}\left(Y_{k}=1\right) \\
\operatorname{Pr}\left(Y_{k}=0\right) & =1-2 \operatorname{Pr}\left(Y_{k}=1\right) \\
\operatorname{Var}\left(Y_{k}\right) & =2 \operatorname{Pr}\left(Y_{k}=1\right)=2 \sum_{m=k}^{n}\binom{n}{m} \epsilon^{m}(1-\epsilon)^{n-m}
\end{aligned}
$$

Note that for small $\epsilon \operatorname{Var}\left(Y_{k}\right) \sim \epsilon^{n / 2}$. Hence while the variance of the sample mean decays in an inverse linear fashion with n, the variance of the median decays exponentially in n. Hence in this case, the median would give a better (lower variance) estimate of the mean.

Problem 7.5

Since X_{m} (m from 1 to n) are IID sequence, assume the expected value and the variance are μ and σ respectively. Moreover, since

$$
\begin{gathered}
\hat{\mu}=\frac{1}{n} \sum_{m=1}^{n} X_{m}, \\
\hat{\sigma^{2}}=\frac{1}{n} \sum_{m=1}^{n}\left(X_{m}-\hat{\mu}\right)^{2} \\
=\frac{1}{n} \sum_{m=1}^{n} X_{m}^{2}-\hat{\mu}^{2}
\end{gathered}
$$

From that, we have

$$
\begin{aligned}
E\left(\hat{\sigma^{2}}\right) & =\frac{1}{n} \sum_{m=1}^{n} E\left(X_{m}^{2}\right)-E\left(\hat{\mu}^{2}\right) \\
& =\frac{1}{n} \sum_{m=1}^{n}\left(\mu^{2}+\sigma^{2}\right)-E\left(\hat{\mu}^{2}\right) \\
& =\mu^{2}+\sigma^{2}-\frac{1}{n^{2}} E\left[\left(\sum_{m=1}^{n} X_{m}\right)^{2}\right] \\
& =\mu^{2}+\sigma^{2}-\frac{1}{n^{2}}\left(n \sigma^{2}+n^{2} \mu^{2}\right) \\
& =\frac{n-1}{n} \sigma^{2}
\end{aligned}
$$

Hence, this estimate is biased.

Problem 7.6

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{n} \sum_{m=1}^{n} X_{m} \\
\hat{s}^{2} & =\frac{1}{n-1} \sum_{m=1}^{n}\left(X_{m}-\hat{\mu}\right)^{2} \\
\operatorname{Var}\left(\hat{s}^{2}\right) & =E\left[\left(\hat{s}^{2}\right)^{2}\right]-\left(E\left[\hat{s}^{2}\right]\right)^{2} \\
& =E\left[\left(\hat{s}^{2}\right)^{2}\right]-\sigma^{4}
\end{aligned}
$$

We can write the equation for \hat{s}^{2} a little differently using matrix tranformations. First make the following definitions:

$$
\begin{aligned}
Y_{m} & =X_{m}-\hat{\mu} \\
Y_{m} & =\left[-\frac{1}{n}-\frac{1}{n} \cdots \frac{n-1}{n} \cdots-\frac{1}{n}\right]\left[X_{1} \cdots X_{m} \cdots X_{n}\right]^{T} \\
\mathbf{Y} & =\left[Y_{1}, Y_{2}, \cdots Y_{n}\right]^{T}=\mathbf{A X} \\
\mathbf{A} & =\left[\begin{array}{cccc}
\frac{n-1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\
-\frac{1}{n} & \frac{n-1}{n} & \cdots & -\frac{1}{n} \\
\cdots & \cdots & \cdots & \cdots \\
-\frac{1}{n} & -\frac{1}{n} & \cdots & \frac{n-1}{n}
\end{array}\right]_{n \times n}
\end{aligned}
$$

Note that the covariance matrix of Y is

$$
\mathbf{C}_{\mathbf{Y}}=E\left[\mathbf{Y} \mathbf{Y}^{T}\right]=E\left[\mathbf{A X X}^{T} \mathbf{A}^{T}\right]=\mathbf{A} \mathbf{C}_{\mathbf{X}} \mathbf{A}^{T}=\sigma_{X}^{2} \mathbf{A} \mathbf{A}^{T}=\sigma_{X}^{2} \mathbf{A}
$$

From this we see that $\operatorname{Var}\left(Y_{k}\right)=\sigma_{X}^{2} \frac{n-1}{n}$ and $\operatorname{Cov}\left(Y_{k}, Y_{m}\right)=-\sigma_{X}^{2} / n$. Furthermore, since the Y_{k} are Gaussian, we have the following higher order moments (which will be needed soon):

$$
\begin{aligned}
E\left[Y_{k}^{4}\right] & =3 \sigma_{Y}^{4}=3 \sigma_{X}^{4} \frac{(n-1)^{2}}{n^{2}}, \\
E\left[Y_{k} Y_{m}\right] & =E\left[Y_{k}^{2}\right] E\left[Y_{m}^{2}\right]+2 E\left[Y_{k} Y_{m}\right]^{2} \\
& =\sigma_{Y}^{4}+2 \operatorname{Cov}\left(Y_{k}, Y_{m}\right)^{2} \\
& =\sigma_{X}^{4} \frac{(n-1)^{2}}{n^{2}}+2 \sigma_{X}^{4} \frac{1}{n^{2}} \\
& =\sigma_{X}^{4} \frac{n^{2}-2 n+3}{n^{2}} .
\end{aligned}
$$

The variance of the sample variance is then found according to

$$
\begin{aligned}
E\left[\left(\hat{s}^{2}\right)^{2}\right] & =\frac{1}{(n-1)^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} E\left[Y_{i}^{2} Y_{j}^{2}\right] \\
& =\frac{1}{(n-1)^{2}}\left\{n E\left[Y_{i}^{4}\right]+\left(n^{2}-n\right) E\left[Y_{i}^{2} Y_{j}^{2}\right]\right\} \\
& =\frac{1}{(n-1)^{2}}\left\{3 n \sigma_{X}^{4} \frac{(n-1)^{2}}{n^{2}}+\left(n^{2}-n\right) \sigma_{X}^{4} \frac{n^{2}-2 n+3}{n^{2}}\right\} \\
& =\sigma_{X}^{4} \frac{n+1}{n-1} . \\
\operatorname{Var}\left(\hat{s}^{2}\right) & =E\left[\left(\hat{s}^{2}\right)^{2}\right]-E\left[\hat{s}^{2}\right]^{2} \\
& =\sigma_{X}^{4} \frac{n+1}{n-1}-\sigma_{X}^{4} \\
& =\frac{2}{n-1} \sigma_{X}^{4} .
\end{aligned}
$$

Problem 7.9

(a) A sequence converges in the mean square sense(MSS) if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[\left|S_{n}-S\right|^{2}\right]=0 \tag{1}
\end{equation*}
$$

and it converges in probability if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|S_{n}-S\right|>\epsilon\right)=0 \tag{2}
\end{equation*}
$$

Applying Markov's ineqaulity to the LHS of (2) we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|S_{n}-S\right|>\epsilon\right) & \leq \frac{\lim _{n \rightarrow \infty} E\left[\left|S_{n}-S\right|^{2}\right]}{\epsilon^{2}} \\
& \leq 0 \text { (since the sequence converges in MSS) } \\
\Rightarrow \lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|S_{n}-S\right|>\epsilon\right) & =0 \text { (since probabilities cannot be negative) }
\end{aligned}
$$

Problem 7.16

If M is an exponential random variable, then $E[M]=\mu_{M}$ and $\operatorname{Var}(M)=$ $\sigma_{M}^{2}=\mu_{M}^{2}$. It is desired that the confidence interval have a width of $\epsilon=$ $0.2 \mu_{M}$. Hence, the number of samples is determined from $\epsilon=c_{0.9} \sigma_{\hat{\mu}}$. This results in

$$
\begin{aligned}
0.2 \mu_{M} & =1.64 \sigma_{M} / \sqrt{n}=1.64 \mu_{M} / \sqrt{n} \\
\Rightarrow n & =67.24
\end{aligned}
$$

At least 68 failures need to be observed.

Refer to page 258 (Confidence Intervals), equations 7.38 and 7.39.

Problem 7.17

$$
E\left[S_{N}\right]=E\left[\sum_{i=1}^{\infty} Y_{i} Z_{i}\right]=\sum_{i=1}^{\infty} E\left[Y_{i} Z_{i}\right]
$$

Note the value of Y_{i} is determine by whether or not the test terminates before timei. In particular, the values of $\left\{Z_{1}, Z_{2}, \ldots, Z_{i-1}\right\}$ determine Y_{i}. In other words, Y_{i} is dependent on $\left\{Z_{1}, Z_{2}, \ldots, Z_{i-1}\right\}$ but not on $\left\{Z_{i}, Z_{i+1}, \ldots\right\}$. Therefore, Y_{i} and Z_{i} are independent.

$$
\begin{aligned}
\Rightarrow E\left[Y_{i} Z_{i}\right] & =E\left[Y_{i}\right] E\left[Z_{i}\right] . \\
E\left[S_{N}\right] & =\sum_{i=1}^{\infty} E\left[Y_{i}\right] E\left[Z_{i}\right]
\end{aligned}
$$

Note that Z_{i} is independent of i since the Z_{i} are IID. Hence,

$$
\begin{aligned}
E\left[S_{N}\right] & =E\left[Z_{i}\right] \sum_{i=1}^{\infty} E\left[Y_{i}\right] \\
& =E\left[Z_{i}\right] E\left[\sum_{i=1}^{\infty} Y_{i}\right] \\
& =E\left[Z_{i}\right] E\left[\sum_{i=1}^{N} 1\right] \\
& =E\left[Z_{i}\right] E[N] .
\end{aligned}
$$

