## Solutions to Chapter 11 Exercises (Part 2)

## Problem 11.1

(a) The impulse response of the integrator is $h(t)=\operatorname{rect}\left(\frac{t-t_{o} / 2}{t_{o}}\right)$. Hence the transfer function is

$$
H(f)=t_{o} \operatorname{sinc}\left(f t_{o}\right) e^{-j 2 \pi f t_{o}}
$$

The PSD of the output is

$$
S_{Y, Y}(f)=S_{X, X}(f)|H(f)|^{2}=\frac{N_{o} t_{o}^{2}}{2} \operatorname{sinc}^{2}\left(f t_{o}\right)
$$

(b) Taking the inverse transforms of the above result

$$
\begin{aligned}
R_{Y, Y}(\tau) & =F^{-1}\left[S_{Y, Y}(f)\right] \\
& =\frac{N_{o} t_{o}}{2} F^{-1}\left[t_{o} \operatorname{sinc}^{2}\left(f t_{o}\right)\right] \\
& =\frac{N_{o} t_{o}}{2} \operatorname{tri}\left(t / t_{o}\right)
\end{aligned}
$$

The total power in the output is:

$$
P_{Y}=R_{Y, Y}(0)=\frac{N_{o} t_{o}}{2}
$$

(c)The noise equivalent bandwidth, $B_{n e q}$, will satisfy

$$
\begin{aligned}
\frac{N_{o} t_{o}^{2}}{2} \cdot 2 B_{n e q} & =P_{Y}=\frac{N_{o} t_{o}}{2} \\
\Rightarrow B_{n e q} & =\frac{1}{2 t_{o}}
\end{aligned}
$$

## Problem 11.5

The given function is not a valid autocorrelation since $\left|R_{X, X}[k]\right|$ is not less than $R_{X, X}[0]$ for all $k$.

## Problem 11.12

From example 10.5 , the PSD of the random telegraph process is

$$
S_{X, X}(f)=\frac{A}{4} \delta(f)+\frac{A}{4} \cdot \frac{c}{c^{2}+(\pi f)^{2}}
$$

The output PSD is given by

$$
S_{Y, Y}(f)=S_{X, X}(f)|H(f)|^{2}
$$

For the filter given,

$$
h(t)=b e^{-a t} u(t) \leftrightarrow H(f)=\frac{b}{a+j 2 \pi f} .
$$

Therefore, the output PSD is

$$
\begin{aligned}
S_{Y, Y}(f) & =\left(\frac{A}{4} \delta(f)+\frac{A}{4} \cdot \frac{c}{c^{2}+(\pi f)^{2}}\right)\left(\frac{b^{2}}{a^{2}+(2 \pi f)^{2}}\right) \\
& =\frac{A b^{2}}{4 a^{2}} \delta(f)+\frac{A c b^{2}}{4} \cdot \frac{1}{\left(c^{2}+(\pi f)^{2}\right)\left(a^{2}+(2 \pi f)^{2}\right)}
\end{aligned}
$$

## Problem 11.14

$$
S_{Y, Y}(f)=S_{X, X}(f)|H(f)|^{2}=\frac{a}{1+\left(f / f_{o}\right)^{2}} \cdot b^{2}\left[\operatorname{rect}\left(\frac{f-f_{c}}{f_{2}-f_{1}}\right)+\operatorname{rect}\left(\frac{f+f_{c}}{f_{2}-f_{1}}\right)\right],
$$

where $f_{c}=\left(f_{1}+f_{2}\right) / 2$. Assuming $f_{2}-f_{1} \ll f_{o}$, the input PSD will be approximately constant over the passband of the filter. In that case, the output PSD will be well approximated by

$$
\begin{aligned}
S_{Y, Y}(f) & \approx S_{X, X}\left(f_{c}\right)|H(f)|^{2}=\frac{a b^{2}}{1+\left(f_{c} / f_{o}\right)^{2}} \cdot\left[\operatorname{rect}\left(\frac{f-f_{c}}{f_{2}-f_{1}}\right)+\operatorname{rect}\left(\frac{f+f_{c}}{f_{2}-f_{1}}\right)\right] \\
\Rightarrow & =\frac{2 a b^{2}\left(f_{2}-f_{1}\right)}{1+\left(f_{c} / f_{o}\right)^{2}} \operatorname{sinc}\left(\left(f_{2}-f_{1}\right) \tau\right) \cos \left(\omega_{c} \tau\right)
\end{aligned}
$$

## Problem 11.17

(a)

$$
\begin{aligned}
R_{Y_{1}, Y_{2}}(\tau) & =E\left[Y_{1}(t) Y_{2}(t+\tau)\right] \\
& =E\left[\int h_{1}(u) N(t-u) d u \int h_{2}(v) N(t+\tau-v) d v\right] \\
& =\iint h_{1}(u) h_{2}(v) E[N(t-u) N(t+\tau-v)] d u d v \\
& =\iint h_{1}(u) h_{2}(v) R_{N, N}(\tau-v+u) d u d v \\
& =\iint h_{1}(u) h_{2}(v) \delta(\tau-v+u) d u d v \\
& =\int h_{1}(u) h_{2}(u+\tau) d u \\
& =h_{1}(-\tau) * h_{2}(\tau) .
\end{aligned}
$$

(b)

$$
S_{Y_{1}, Y_{2}}(f)=F\left[h_{1}(-\tau) * h_{2}(\tau)\right]=H_{1}^{*}(f) H_{2}(f)
$$

(c) The two processes are independent at the same sampling times if $R_{Y_{1}, Y_{2}}(0)=$ 0 . From the results of part (a), this constraint is expressed in the time domain as

$$
R_{Y_{1}, Y_{2}}(0)=0 \Rightarrow \int h_{1}(t) h_{2}(t) d t=0
$$

In words, the impulse responses of the filters must be orthogonal. Transforming this to the frequency domain, the constraint becomes

$$
\int S_{Y_{1}, Y_{2}}(f) d f=0 \Rightarrow \int H_{1}^{*}(f) H_{2}(f) d f=0
$$

Hence the transfer functions must be orthogonal.
(d) The two processes are independent at arbitrary sampling times if $R_{Y_{1}, Y_{2}}(\tau)=$ 0 for all $\tau$. This leads to

$$
\int h_{1}(t) h_{2}(t+\tau) d t=0
$$

In the frequency domain, we must have $S_{Y_{1}, Y_{2}}(f)=0$ for all $f$. This leads to

$$
H_{1}^{*}(f) H_{2}(f)=0
$$

In this case, the transfer functions must be non-overlapping in frequency.

## Problem 11.20

$$
H(f)=\frac{4}{10+j 2 \pi f} \leftrightarrow h(t)=4 e^{-10 t} u(t)
$$

The noise equivalent BW is found as follows:

$$
\begin{aligned}
\int_{0}^{\infty}|H(f)|^{2} d f & =\frac{1}{2} \int_{-\infty}^{\infty}|H(f)|^{2} d f=\frac{1}{2} \int_{-\infty}^{\infty} h^{2}(t) d t \\
& =8 \int_{0}^{\infty} e^{-20 t} d t=\frac{2}{5} \\
|H(0)|^{2} & =\frac{4}{25} \\
\Rightarrow B_{n e q} & =\frac{1}{\mid H\left(\left.0\right|^{2}\right.} \int_{0}^{\infty}|H(f)|^{2} d f=\frac{5}{2}
\end{aligned}
$$

The 3dB BW occurs when

$$
\left|H\left(f_{3}\right)\right|^{2}=\frac{1}{2}|H(0)|^{2} \Rightarrow f_{3}=\frac{5}{\pi}
$$

The ratio is then

$$
\frac{B_{n e q}}{f_{3}}=\frac{5 / 2}{5 / \pi}=\frac{\pi}{2} .
$$

