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Problems

1. We wish to estimate the spectrum of a stationary stochastic process using the method of averaged
periodograms. The analog signal is sampled at a sampling frequency of 1 kHz. Suppose a frequency
resolution of 1 Hz and a relative variance of 1% is desired for the estimated spectrum. How long
time (in seconds) does it take to collect the required data?

2. Tt is desired to estimate the spectrum of a stationary continuous-time stochastic process {z,(t)}.
An ideal lowpass filter with F, = 5 kHz is first applied to {z,(t)}. The signal is then sampled,
and a total of 10 s of data is collected. The spectrum is estimated by averaging non-overlapping
periodograms. The periodogram lengths are selected to give a frequency resolution of approximately
10 Hz. Emilia uses a sampling frequency of Fy; = 10 kHz, whereas Emil suggests that F; = 100 kHz
should give a lower variance of the spectrum estimate, since more data is obtained. Determine the
normalized variance for the two choices of F, and investigate if Emil is right!

3. Let z[n] be a stationary stochastic process. Suppose the spectrum is estimated as

100
P, (/) = Z o [n]wln]e=7“m
n=—100
where
wln] = e~0lnl . n| < 100
10 : 0> 100

and 7,[n] is based on N = 10000 samples.

Determine the approximate normalized variance

Var (Pr(ej“)>
Pz(elv)

V=
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4. Consider the following three signal models:
x[n] + 0.6z[n — 1] — 0.2z[n — 2] = e[n]
x[n] = e[n] + 0.8e[n — 1] + 0.2¢e[n — 2]
z[n] + 0.8z[n — 1] = e[n] — 0.2e[n — 1]

where e[n] is a zero-mean white noise with variance 02 = 1. Determine the autocorrelation function
r.[k] and the spectrum P, (e’*) for each of the cases!

5. The spectrum of a stationary stochastic process is to be estimated from the data:
x[n] = {0.6,—-0.7,0.2,0.3} .
Due to the small sample support, a simple AR(1)-model is exploited:
z[n] + a1z[n — 1] = e[n].

Determine estimates of the AR-parameter a; and the white noise variance o2. Based on these, give
a parametric estimate of the spectrum P, (e’*)!

6. We wish to estimate an Auto-Regressive model for a measured signal z[n]. The covariance function
is estimated based on N = 1000 data points as

7(0) =7.73, 7,(1) =6.80, 7,(2)=4.75, 7,(3)=2.36, 7,(4)=0.23
Use the Yule-Walker method to estimate a model

z[n] + ar1z[n — 1] + asz[n — 2] = e[n]

2)

e

for the signal, where e[n] is white noise. Also give an estimate of the noise variance o

7. We are given a noise-corrupted measurement x[n] of a desired signal d[n]. The observed signal is
thus modeled by
x[n] = d[n] + wln].
Suppose w(n] is white noise with variance o2 = 1. The desired signal is represented by the low-pass
AR-model
d[n] = 0.9d[n — 1] + ¢[n],

where e[n] is white noise with variance 02. An estimate of the desired signal is generated by filtering
the measurement as .
dn] = hox[n] + hiz[n — 1].

Determine hg and hy such that E[(d[n] — d[n])?] is minimized. Then sketch the amplitude char-
acteristics of the resulting filter hg + hy2~! for 02 ”small”, "medium” and ”large”, respectively.
Explain the result!

8. The goal of this problem is to equalize a communication channel using an FIR Wiener filter. The
desired signal d[n] is described as

d[n] — 0.8d[n — 1] = ¢e[n],

where e[n] is zero-mean white noise with variance o2 = 1. The measured signal z[n] is given by

v(n)

— | 1405271 »(+

Channel
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where v[n] is a zero-mean white noise with variance o2 = 0.1. Determine a filter

d[n] = wo z[n] + wy z[n — 1]
so that E {(d[n] - dA[n})T is minimized!

9. A 2:nd order digital FIR notch filter can be designed by placing the zeros at e*7“. The resulting
transfer function is
H(z)=1—2coswz ' + 272
Thus, a natural approach for estimating the frequency of a sine-wave is to apply a constrained FIR
filter
W(z)=1—wzt + 272
to the measured signal, and belect w such that the output power is minimized. The frequency could
then be estimated as w = arccos ¢, provided |w| < 2. Now, suppose the measured signal is

x[n] = Acos(won + ¢) + v[n],

where ¢ is a U(0,27) random phase and v[n] is a zero-mean stationary white noise. The filter
output is given by

y[n] = z[n] — wzn — 1]+ z[n — 2].
Find the w that minimizes E[y*[n]], and compute & = arccos %. Then, prove that & = wy for
02 =0, but that the estimate is otherwise biased.

Solutions to Selected Problems

1. In the method of periodogram averaging (Bartlett’s method), the available N samples are split into
K = N/M non-overlapping blocks, each of length M samples. The periodogram for each sub-block
is computed, and the final estimate is the average of these. The variance of each sub-periodogram
is

Var{P{)(¢)} = PZ (™)
Thus, the normalized variance is
Var{P r(e79)} N
Pz (ev)

or 100%. Assuming the sub-periodograms to be uncorrelated, averaging reduces the normalized
variance to L

Var{Pg(e’¥)}

P2(e*)

To achieve a normalized variance of 0.01 (1%) thus requires averaging K > 100 sub-periodograms.
Each sub-periodogram has the approximate frequency resolution Aw ~ 27/M, or Af ~ 1/M. In
un-normalized frequency this becomes AF =~ Fy/M Hz. With Fy = 1000 and a desired frequency
resolution of AF < 1 Hz, the length of each sub-block must be M > 1000. Together with K > 100,
this shows that the number of available samples must be N = KM > 10°. At 1 kHz, the data
collection takes at least 100 seconds.

~1/K

3. For Blackman-Tukey’s method, the normalized variance is given by

_ Var{PBT (')} 1 i w2

p2 (eW lag
k=—M
where wiq4[k] is the lag window. In this case we get
M 100 100 1 — —200
—0.2|k| _ —02k _ 1 _ot 1~
S whlkl= ) e zze 1=2——7 —1~10.
k=—M k=—100

Thus, the normalized variance is v = 10/N = 1073.
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4. The first model is an AR(2)-process:
x[n] + 0.6z[n — 1] — 0.22z[n — 2] = e[n]
Multiplying by z[n — k|, k > 0, and taking expectation leads to the relation
k] + 0.6r,[k — 1] — 0.2r,[k — 2] = 02 §[K]

(Yule-Walker). With k& = {0,1,2}, we get three equations in three unknowns (see also the theory

complement):
1 0.6 =027 [ ruf0] 1
06 1-02 0 r1] | =10
—02 06 1 rel2] 0

Solving this, for example using Matlab, leads to 7,[0] = 2.4, r;[1] = —1.8 and r,[2] = 1.6. We can
then continue for k = 3,4,... to get the autocorrelation at any lag, for example,

rz[3] = —0.6r5[2] +0.2r,[1] = —1.3, r,[4] = —0.6r4[3] + 0.2r,[2] = 1.1.
It is of course also possible to solve the homogenous difference equation
ryk] + 0.6r4[k — 1] — 0.2r, [k — 2] =0,

with the given ”initial conditions”, to give the general solution. The spectrum of the AR model is
given by

o2 1 1

jw = = =
Fo(e’) A2~ (1+0.6e77% — 0.2¢72)(1 + 0.6¢7* — 0.2¢72%) 1.4+ 0.96 cosw — 0.4 cos 2w

The second model is an MA(2) process:
a[n] = e[n] + 0.8¢[n — 1] + 0.2¢[n — 2

In this case, the autocorrelation function is finite. First, multiply by z[n] and take expectation,
which leads to

7.[0] = E{(e[n] + 0.8e[n — 1] + 0.2e[n — 2])*} = (1 +0.8% + 0.2%)02 = 1.68.
Next, multiply by xz[n — 1] and take expectation:
r.[1] = E{(e[n]+0.8e[n—1]+0.2e[n—2])(e[n—1]+0.8¢[n—2]+0.2¢[n—3])} = (0.840.2x0.8)c? = 0.96 .
Finally, multiplying by z[n — 2] and taking expectation leads to
ro[1] = E{(e[n] + 0.8¢[n — 1] + 0.2e[n — 2])(e[n — 2] + 0.8¢[n — 3] + 0.2¢[n — 4])} = 0.2.

Multiplying by x[n — k], k > 2 and taking expectation wee see that r,[k] = 0, |k| > 2. The
spectrum of the MA process is given by

Po(e7¥) = 02| B(e’)]* = (14-0.8¢ 77 4-0.2¢772) (14-0.8¢7“ +0.2¢7*) = 1.6841.92 cos w+0.4 cos 2w

The third model is the ARMA(1,1) process:
x[n] + 0.8z[n — 1] = e[n] — 0.2e[n — 1]

In general, computing the autocorrelation function for an ARMA model is quite difficult. However,
in the ARMA(1,1) case the following procedure is easiest. First, multiply by z[n — 1] and take
expectation, which gives:

r2[1] + 0.87,[0] = —0.202 .
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Second, square the ARMA model equation and again take expectation:
E{(z[n] +0.8z[n — 1])?} = E{(e[n] — 0.2¢[n — 1])*}.

This leads to
1.647,[0] 4 1.67,[1] = 1.0402.

Now we have two equations in the two unknowns 7,[0] and r,[1]:
08 1 rz[0] | | —0.2
164 1.6 || ro[1] | ~ | 104
Applying the usual formula for inverting a 2 x 2 matrix, the solution is easily obtained as
ro[0] ] 1 1.6 —-1][-02] [ 38
(1] | T 08x1.6—1x1.64 | —1.64 08 104 | 7] —32 |

The remaining auto-correlation parameters can be obtained by multiplying the ARMA equation by
x[n — k], k > 2 and taking expectation:

rolk] +08rg[k — 1] =0, k> 2.

Thus, 7,[2] = —0.87,[1] = 2.6 etc. In general, r.[k] = (—0.8)*~1r,[1] = (—0.8)¥~1(=3.2) for k > 2.
The spectrum of the ARMA model is given by

o |BE@)2 (1-0.267)(1—02e77%) 1 —04cosw

¢ |A(e¥)|2 (14 0.8¢5%)(1 4 0.8¢73%) 1+ 1.6cosw

P (/) =0
5. The Yule-Walker method gives the estimate

ay = —7,[0] 717, [1].

With the given data, the sample autocorrelation function is calculated as

1
[0] = Z(0.62 +0.72 4+ 0.22 +0.3%) = 0.245

and
1
P[1] = 1(0.6 x (—=0.7) + (=0.7) x 0.2+ 0.2 x 0.3) = —0.125
Thus, we get
0.125
G = —— = bl.
@ = gog5 <00

The noise variance estimate follows as
62 = 7,]0] + ay7,[1] ~ 0.18.
7. The optimal filter (in the LMMSE sense) is given by the Wiener-Hopf (W-H) equations:
S hlklrall — K] = raall].
k

In this case, the filter is a causal FIR filter with two taps (first-order filter):

d[n] = hox[n] + hiz[n — 1].

Thus, the W-H equations are

1
> hrell = k] =ragl], 1=0,1.
k=0
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In matrix form, this becomes

The measured signal is given by
x[n] = d[n] + wln].

The auto-correlation function is then given by
rzk] = E{(d[n] + w[n])(d[n — k] + w[n — k])} = ralk] + r[k]

(since d[n] and w[n] are uncorrelated). Now, w[n] is white noise, so 7,[k] = 026[k] = §[k]. The
desired signal is the AR(1) process:

d[n] —0.9d[n — 1] = e[n].

To compute the autocorrelation function we use the Yule-Walker equations, which on matrix form
become
1 -0.9 rgl0] | [ 1 o2
-0.9 1 rgl] | | O e

rql0] | _ | 5.26 2
rall] | 7| 474 | %
Inserting the autocorrelation functions into the W-H equations now gives
5.26 4.74 2 1 0 ho | | 5.26 2
({4.74 5.26]064—{0 1D[hl ]‘{4.74}"6’
where we have also used that rq,[k] = rq[k], since d[n] and w[n] are uncorrelated. It is possible, but

a bit cumbersome, to solve this 2 x 2 system for a general o2. Instead we take the extreme cases
02 — 0 and 02 — oo first, and then the intermediate case o2 = 1. For o2 very small we have

AL

Thus, when the SNR is very low, the estimation is (f[n] = 0. For very large 02 we have instead
526 4.74 1[ ho | [ 5.26
474 526 | | hy | | 474 |7

which gives the optimal FIR coefficients as

=1

Thus, in the high SNR case we take d[n] = z[n], i.e. no filtering is necessary. For the intermediate

case 02 =1 we get
6.26 474 1[ ho | [ 526
4.74 6.26 hi | | 474 |

)=o)

The estimate is then d[n] = 0.62z[n] 4+ 0.28x[n — 1], corresponding to the transfer function

Solving this gives

which leads to

H(e?¥) =0.62 + 0.28¢ 7%

This is a low-pass filter with DC gain H(e’%) = 0.62 4+ 0.28 = 0.9, and 3 dB cutoff frequency
fe = 0.25 7per samples”. The filter is an optimal compromise for removing as much noise (which
has a flat spectrum) as possible, without distorting the signal (which is low-pass) too much.



