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Problems

1. We wish to estimate the spectrum of a stationary stochastic process using the method of averaged
periodograms. The analog signal is sampled at a sampling frequency of 1 kHz. Suppose a frequency
resolution of 1 Hz and a relative variance of 1% is desired for the estimated spectrum. How long
time (in seconds) does it take to collect the required data?

2. It is desired to estimate the spectrum of a stationary continuous-time stochastic process {xa(t)}.
An ideal lowpass filter with Fp = 5 kHz is first applied to {xa(t)}. The signal is then sampled,
and a total of 10 s of data is collected. The spectrum is estimated by averaging non-overlapping
periodograms. The periodogram lengths are selected to give a frequency resolution of approximately
10 Hz. Emilia uses a sampling frequency of Fs = 10 kHz, whereas Emil suggests that Fs = 100 kHz
should give a lower variance of the spectrum estimate, since more data is obtained. Determine the
normalized variance for the two choices of Fs, and investigate if Emil is right!

3. Let x[n] be a stationary stochastic process. Suppose the spectrum is estimated as

P̂x

(
ejω

)
=

100∑
n=−100

r̂x[n]w[n]e−jωn

where

w[n] =
{

e−0.1|n| ; |n| ≤ 100
0 ; n > 100

and r̂x[n] is based on N = 10000 samples.

Determine the approximate normalized variance

ν =
Var

(
P̂x(ejω)

)

P 2
x (ejω)
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4. Consider the following three signal models:

x[n] + 0.6x[n− 1]− 0.2x[n− 2] = e[n]

x[n] = e[n] + 0.8e[n− 1] + 0.2e[n− 2]

x[n] + 0.8x[n− 1] = e[n]− 0.2e[n− 1]

where e[n] is a zero-mean white noise with variance σ2
e = 1. Determine the autocorrelation function

rx[k] and the spectrum Px(ejω) for each of the cases!

5. The spectrum of a stationary stochastic process is to be estimated from the data:

x[n] = {0.6,−0.7, 0.2, 0.3} .

Due to the small sample support, a simple AR(1)-model is exploited:

x[n] + a1x[n− 1] = e[n] .

Determine estimates of the AR-parameter a1 and the white noise variance σ2
e . Based on these, give

a parametric estimate of the spectrum Px(ejω)!

6. We wish to estimate an Auto-Regressive model for a measured signal x[n]. The covariance function
is estimated based on N = 1000 data points as

r̂x(0) = 7.73, r̂x(1) = 6.80, r̂x(2) = 4.75, r̂x(3) = 2.36, r̂x(4) = 0.23

Use the Yule-Walker method to estimate a model

x[n] + a1x[n− 1] + a2x[n− 2] = e[n]

for the signal, where e[n] is white noise. Also give an estimate of the noise variance σ2
e !

7. We are given a noise-corrupted measurement x[n] of a desired signal d[n]. The observed signal is
thus modeled by

x[n] = d[n] + w[n] .

Suppose w[n] is white noise with variance σ2
w = 1. The desired signal is represented by the low-pass

AR-model
d[n] = 0.9d[n− 1] + e[n] ,

where e[n] is white noise with variance σ2
e . An estimate of the desired signal is generated by filtering

the measurement as
d̂[n] = h0x[n] + h1x[n− 1] .

Determine h0 and h1 such that E[(d[n] − d̂[n])2] is minimized. Then sketch the amplitude char-
acteristics of the resulting filter h0 + h1z

−1 for σ2
e ”small”, ”medium” and ”large”, respectively.

Explain the result!

8. The goal of this problem is to equalize a communication channel using an FIR Wiener filter. The
desired signal d[n] is described as

d[n]− 0.8d[n− 1] = e[n],

where e[n] is zero-mean white noise with variance σ2
e = 1. The measured signal x[n] is given by

v(n)

x(n)d(n)
+−11+0.5 z

Channel
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where v[n] is a zero-mean white noise with variance σ2
v = 0.1. Determine a filter

d̂[n] = w0 x[n] + w1 x[n− 1]

so that E

[(
d[n]− d̂[n]

)2
]

is minimized!

9. A 2:nd order digital FIR notch filter can be designed by placing the zeros at e±jω. The resulting
transfer function is

H(z) = 1− 2 cos ωz−1 + z−2.

Thus, a natural approach for estimating the frequency of a sine-wave is to apply a constrained FIR
filter

W (z) = 1− wz−1 + z−2

to the measured signal, and select w such that the output power is minimized. The frequency could
then be estimated as ω = arccos w

2 , provided |w| < 2. Now, suppose the measured signal is

x[n] = A cos(ω0n + ϕ) + v[n],

where ϕ is a U(0, 2π) random phase and v[n] is a zero-mean stationary white noise. The filter
output is given by

y[n] = x[n]− wx[n− 1] + x[n− 2] .

Find the w that minimizes E[y2[n]], and compute ω̂ = arccos w
2 . Then, prove that ω̂ = ω0 for

σ2
v = 0, but that the estimate is otherwise biased.

Solutions to Selected Problems

1. In the method of periodogram averaging (Bartlett’s method), the available N samples are split into
K = N/M non-overlapping blocks, each of length M samples. The periodogram for each sub-block
is computed, and the final estimate is the average of these. The variance of each sub-periodogram
is

V ar{P̂ (i)
per(e

jω)} ≈ P 2
x (ejω)

Thus, the normalized variance is
V ar{P̂ (i)

per(ejω)}
P 2

x (ejω)
≈ 1

or 100%. Assuming the sub-periodograms to be uncorrelated, averaging reduces the normalized
variance to

V ar{P̂B(ejω)}
P 2

x (ejω)
≈ 1/K

To achieve a normalized variance of 0.01 (1%) thus requires averaging K ≥ 100 sub-periodograms.
Each sub-periodogram has the approximate frequency resolution ∆ω ≈ 2π/M , or ∆f ≈ 1/M . In
un-normalized frequency this becomes ∆F ≈ Fs/M Hz. With Fs = 1000 and a desired frequency
resolution of ∆F ≤ 1 Hz, the length of each sub-block must be M ≥ 1000. Together with K ≥ 100,
this shows that the number of available samples must be N = KM ≥ 105. At 1 kHz, the data
collection takes at least 100 seconds.

3. For Blackman-Tukey’s method, the normalized variance is given by

ν =
V ar{P̂BT (ejω)}

P 2
x (ejω)

≈ 1
N

M∑

k=−M

w2
lag[k] ,

where wlag[k] is the lag window. In this case we get

M∑

k=−M

w2
lag[k] =

100∑

k=−100

e−0.2|k| = 2
100∑

k=0

e−0.2k − 1 = 2
1− e−200

1− e−0.2
− 1 ≈ 10 .

Thus, the normalized variance is ν = 10/N = 10−3.
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4. The first model is an AR(2)-process:

x[n] + 0.6x[n− 1]− 0.2x[n− 2] = e[n]

Multiplying by x[n− k], k ≥ 0, and taking expectation leads to the relation

rx[k] + 0.6rx[k − 1]− 0.2rx[k − 2] = σ2
e δ[k]

(Yule-Walker). With k = {0, 1, 2}, we get three equations in three unknowns (see also the theory
complement): 


1 0.6 −0.2

0.6 1− 0.2 0
−0.2 0.6 1







rx[0]
rx[1]
rx[2]


 =




1
0
0




Solving this, for example using Matlab, leads to rx[0] = 2.4, rx[1] = −1.8 and rx[2] = 1.6. We can
then continue for k = 3, 4, . . . to get the autocorrelation at any lag, for example,

rx[3] = −0.6rx[2] + 0.2rx[1] = −1.3 , rx[4] = −0.6rx[3] + 0.2rx[2] = 1.1 .

It is of course also possible to solve the homogenous difference equation

rx[k] + 0.6rx[k − 1]− 0.2rx[k − 2] = 0 ,

with the given ”initial conditions”, to give the general solution. The spectrum of the AR model is
given by

Px(ejω) =
σ2

e

|A(ejω)|2 =
1

(1 + 0.6e−jω − 0.2e−j2ω)(1 + 0.6ejω − 0.2ej2ω)
=

1
1.4 + 0.96 cos ω − 0.4 cos 2ω

The second model is an MA(2) process:

x[n] = e[n] + 0.8e[n− 1] + 0.2e[n− 2]

In this case, the autocorrelation function is finite. First, multiply by x[n] and take expectation,
which leads to

rx[0] = E{(e[n] + 0.8e[n− 1] + 0.2e[n− 2])2} = (1 + 0.82 + 0.22)σ2
e = 1.68 .

Next, multiply by x[n− 1] and take expectation:

rx[1] = E{(e[n]+0.8e[n−1]+0.2e[n−2])(e[n−1]+0.8e[n−2]+0.2e[n−3])} = (0.8+0.2×0.8)σ2
e = 0.96 .

Finally, multiplying by x[n− 2] and taking expectation leads to

rx[1] = E{(e[n] + 0.8e[n− 1] + 0.2e[n− 2])(e[n− 2] + 0.8e[n− 3] + 0.2e[n− 4])} = 0.2 .

Multiplying by x[n − k], k > 2 and taking expectation wee see that rx[k] = 0, |k| > 2. The
spectrum of the MA process is given by

Px(ejω) = σ2
e |B(ejω)|2 = (1+0.8e−jω+0.2e−j2ω)(1+0.8ejω+0.2ej2ω) = 1.68+1.92 cos ω+0.4 cos 2ω

The third model is the ARMA(1,1) process:

x[n] + 0.8x[n− 1] = e[n]− 0.2e[n− 1]

In general, computing the autocorrelation function for an ARMA model is quite difficult. However,
in the ARMA(1,1) case the following procedure is easiest. First, multiply by x[n − 1] and take
expectation, which gives:

rx[1] + 0.8rx[0] = −0.2σ2
e .
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Second, square the ARMA model equation and again take expectation:

E{(x[n] + 0.8x[n− 1])2} = E{(e[n]− 0.2e[n− 1])2} .

This leads to
1.64rx[0] + 1.6rx[1] = 1.04σ2

e .

Now we have two equations in the two unknowns rx[0] and rx[1]:
[

0.8 1
1.64 1.6

] [
rx[0]
rx[1]

]
=

[ −0.2
1.04

]

Applying the usual formula for inverting a 2× 2 matrix, the solution is easily obtained as
[

rx[0]
rx[1]

]
=

1
0.8× 1.6− 1× 1.64

[
1.6 −1
−1.64 0.8

] [ −0.2
1.04

]
≈

[
3.8

−3.2

]
.

The remaining auto-correlation parameters can be obtained by multiplying the ARMA equation by
x[n− k], k ≥ 2 and taking expectation:

rx[k] + 0.8rx[k − 1] = 0 , k ≥ 2.

Thus, rx[2] = −0.8rx[1] ≈ 2.6 etc. In general, rx[k] = (−0.8)k−1rx[1] = (−0.8)k−1(−3.2) for k ≥ 2.
The spectrum of the ARMA model is given by

Px(ejω) = σ2
e

|B(ejω)|2
|A(ejω)|2 =

(1− 0.2ejω)(1− 0.2e−jω)
(1 + 0.8ejω)(1 + 0.8e−jω)

=
1− 0.4 cos ω

1 + 1.6 cos ω

5. The Yule-Walker method gives the estimate

â1 = −r̂x[0]−1r̂x[1] .

With the given data, the sample autocorrelation function is calculated as

r̂x[0] =
1
4
(0.62 + 0.72 + 0.22 + 0.32) = 0.245

and
r̂x[1] =

1
4
(0.6× (−0.7) + (−0.7)× 0.2 + 0.2× 0.3) = −0.125

Thus, we get

â1 =
0.125
0.245

≈ 0.51 .

The noise variance estimate follows as

σ̂2
e = r̂x[0] + â1r̂x[1] ≈ 0.18 .

7. The optimal filter (in the LMMSE sense) is given by the Wiener-Hopf (W-H) equations:
∑

k

h[k]rx[l − k] = rdx[l] .

In this case, the filter is a causal FIR filter with two taps (first-order filter):

d̂[n] = h0x[n] + h1x[n− 1] .

Thus, the W-H equations are

1∑

k=0

hkrx[l − k] = rdx[l] , l = 0, 1.
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In matrix form, this becomes
[

rx[0] rx[1]
rx[1] rx[0]

] [
h0

h1

]
=

[
rdx[0]
rdx[1]

]

The measured signal is given by
x[n] = d[n] + w[n] .

The auto-correlation function is then given by

rx[k] = E{(d[n] + w[n])(d[n− k] + w[n− k])} = rd[k] + rw[k]

(since d[n] and w[n] are uncorrelated). Now, w[n] is white noise, so rw[k] = σ2
wδ[k] = δ[k]. The

desired signal is the AR(1) process:

d[n]− 0.9d[n− 1] = e[n] .

To compute the autocorrelation function we use the Yule-Walker equations, which on matrix form
become [

1 −0.9
−0.9 1

] [
rd[0]
rd[1]

]
=

[
1
0

]
σ2

e .

Solving this gives [
rd[0]
rd[1]

]
≈

[
5.26
4.74

]
σ2

e .

Inserting the autocorrelation functions into the W-H equations now gives
([

5.26 4.74
4.74 5.26

]
σ2

e +
[

1 0
0 1

])[
h0

h1

]
=

[
5.26
4.74

]
σ2

e ,

where we have also used that rdx[k] = rd[k], since d[n] and w[n] are uncorrelated. It is possible, but
a bit cumbersome, to solve this 2 × 2 system for a general σ2

e . Instead we take the extreme cases
σ2

e → 0 and σ2
e →∞ first, and then the intermediate case σ2

e = 1. For σ2
e very small we have

[
h0

h1

]
→

[
5.26
4.74

]
σ2

e →
[

0
0

]
.

Thus, when the SNR is very low, the estimation is d̂[n] = 0. For very large σ2
e we have instead

[
5.26 4.74
4.74 5.26

] [
h0

h1

]
=

[
5.26
4.74

]
,

which gives the optimal FIR coefficients as
[

h0

h1

]
=

[
1
0

]

Thus, in the high SNR case we take d̂[n] = x[n], i.e. no filtering is necessary. For the intermediate
case σ2

e = 1 we get [
6.26 4.74
4.74 6.26

] [
h0

h1

]
=

[
5.26
4.74

]
,

which leads to [
h0

h1

]
=

[
0.63
0.28

]
.

The estimate is then d̂[n] = 0.62x[n] + 0.28x[n− 1], corresponding to the transfer function

H(ejω) = 0.62 + 0.28e−jω .

This is a low-pass filter with DC gain H(ej0) = 0.62 + 0.28 = 0.9, and 3 dB cutoff frequency
fc ≈ 0.25 ”per samples”. The filter is an optimal compromise for removing as much noise (which
has a flat spectrum) as possible, without distorting the signal (which is low-pass) too much.


