Solutions to Chapter 4 Exercises (Part 2)

Problem 4.3

Let $N=$ number of packets transmitted until first success.

$$
\begin{aligned}
\operatorname{Pr}(N=n) & =q^{n-1}(1-q), \quad n=1,2,3, \ldots \\
E[N] & =\sum_{n=1}^{\infty} n q^{n-1}(1-q)=(1-q) \sum_{n=1}^{\infty} n q^{n-1} \\
& =(1-q) \frac{d}{d q} \sum_{n=1}^{\infty} q^{n}=(1-q) \frac{d}{d q} \frac{1}{1-q}=\frac{1}{1-q} .
\end{aligned}
$$

Problem 4.4

$$
\begin{aligned}
T & =\text { total transmission time } \\
& =(N-1) T_{i}+N T_{t}=N\left(T_{i}+T_{t}\right)-T_{i} . \\
E[T] & =E[N]\left(T_{i}+T_{t}\right)-T_{i}=\frac{T_{i}+T_{t}}{1-q}-T_{i} .
\end{aligned}
$$

Problem 4.17

$$
f_{X}(x)=2 e^{-2 x} u(x)
$$

(a)

$$
X \geq 0, Y=1-X \Rightarrow Y \leq 1 .
$$

(b)

$$
f_{Y}(y)=\left.\frac{2 e^{-2 x} u(x)}{|-1|}\right|_{x=1-y}=2 \exp (-2(1-y)) u(1-y)
$$

Problem 4.23

(a)

$$
\begin{aligned}
& \operatorname{Pr}(Y=0)=\operatorname{Pr}(X<0)=\frac{1}{2} \\
& \operatorname{Pr}(Y=1)=\operatorname{Pr}(X>0)=\frac{1}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \operatorname{Pr}(Y=0)=\operatorname{Pr}(X<0)=1-Q\left(-\frac{1}{2}\right)=Q\left(\frac{1}{2}\right)=0.3085 \\
& \operatorname{Pr}(Y=1)=\operatorname{Pr}(X>0)=Q\left(-\frac{1}{2}\right)=1-Q\left(\frac{1}{2}\right)=0.6915
\end{aligned}
$$

Problem 4.28

$$
\Phi_{Y}(\omega)=E\left[e^{j \omega Y}\right]=E\left[e^{j \omega(a X+b)}\right]=e^{j \omega b} E\left[e^{j \omega a X}\right]=e^{j \omega b} \Phi_{X}(a \omega)
$$

Problem 4.36

$$
\begin{aligned}
H_{X}(z) & =\frac{1}{n} \frac{1-z^{n}}{1-z} \\
& =\frac{1}{n} \sum_{k=0}^{n-1} z^{k}
\end{aligned}
$$

We know that

$$
\begin{aligned}
H_{X}(z) & =\sum_{k=0}^{\infty} P_{X}(X=k) z^{k} \\
& =\frac{1}{n} \sum_{k=0}^{n-1} z^{k}=\sum_{k=0}^{n-1} \frac{1}{n} z^{k}
\end{aligned}
$$

Recognizing that the coeffecient of z^{k} in the above equation is the $P_{X}(X=k)$ we get the PMF of the distribution as

$$
P_{X}(X=k)= \begin{cases}\frac{1}{n} & k=0,1,2, \ldots n-1 \\ 0 & \text { otherwise }\end{cases}
$$

