Solutions to Chapter 10 Exercises (Part 2)

Problem 10.5

$$
S_{X, X}(f)=F T\left[R_{X, X}(\tau)\right]=F T[1]=\delta(f)
$$

That is, all power in the process is at d.c.

Problem 10.7

$$
\begin{aligned}
R_{X, X}(t, t+\tau) & =E\left[b^{2} \cos (\omega t+\Theta) \cos (\omega(t+\tau)+\Theta)\right] \\
& =\frac{b^{2}}{2} \cos (\omega \tau)+\frac{b^{2}}{2} E[\cos (\omega(2 t+\tau)+2 \Theta)] \\
R_{X, X}(\tau) & =\left\langle R_{X, X}(t, t+\tau)\right\rangle=\frac{b^{2}}{2} \cos (\omega \tau) \\
S_{X, X}\left(f^{\prime}\right) & =\frac{b^{2}}{4} \delta\left(f^{\prime}-f\right)+\frac{b^{2}}{4} \delta\left(f^{\prime}+f\right)
\end{aligned}
$$

This PSD is independent of the distribution of Θ. This is expected because the process has all its power at frequency, f, regardless of the phase Θ.

Problem 10.10

(a)

$$
R_{Z, Z}[k]=R_{X, X}[k]+R_{Y, Y}[k]=\left(\frac{1}{2}\right)^{|k|}+\left(\frac{1}{3}\right)^{|k|}
$$

(see Exercise 8.18 for details)
(b) For a funcion of the form $R[k]=p^{|k|}$, the Fourier Transform is $\left(t_{o}\right.$ is the time between samples of the discrete time process)

$$
\begin{aligned}
S(f) & =\sum_{k} R[k] e^{-j 2 \pi k f t_{o}} \\
& =1+\sum_{k=1}^{\infty} p^{k}\left\{e^{-j 2 \pi k f t_{o}}+e^{j 2 \pi k f t_{o}}\right\} \\
& =1+\frac{p e^{-j 2 \pi k f t_{o}}}{1-p e^{-j 2 \pi k f t_{o}}}+\frac{p e^{j 2 \pi k f t_{o}}}{1-p e^{j 2 \pi k f t_{o}}} \\
& =\frac{1-p^{2}}{1+p^{2}-2 p \cos \left(2 \pi f t_{o}\right)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
S_{X, X}(f) & =\frac{3 / 4}{5 / 4-\cos \left(2 \pi f t_{o}\right)} \\
S_{Y, Y}(f) & =\frac{8 / 9}{10 / 9-(2 / 3) \cos \left(2 \pi f t_{o}\right)} \\
S_{Z, Z}(f) & =S_{X, X}(f)+S_{Y, Y}(f)
\end{aligned}
$$

Problem 10.17

$$
\begin{equation*}
X[n]=\frac{1}{2} X[n-1]+E[n] . \tag{1}
\end{equation*}
$$

Taking expectations of both sides of (1) results in

$$
\mu[n]=\frac{1}{2} \mu[n-1], \quad n=1,2,3, \ldots
$$

Hence $\mu[n]=(1 / 2)^{n} \mu[0]$. Noting that $X(0)=0$, then $\mu[0]=0 \Rightarrow \mu[n]=0$. Multiply both sides of (1) by $X[k]$ and then take expected values to produce

$$
E[X[k] X[n]]=\frac{1}{2} E[X[k] X[n-1]]+E[X[k] E[n]] .
$$

Assuming $k<n, X[k]$ and $E[n]$ are independent. Thus, $E[X[k] E[n]]=0$ and therefore

$$
\begin{aligned}
R_{X, X}[k, n] & =\frac{1}{2} R_{X, X}[k, n-1] . \\
\Rightarrow R_{X, X}[k, n] & =\left(\frac{1}{2}\right)^{n-k} R_{X, X}[k, k], \quad n=k, k+1, k+2, \ldots
\end{aligned}
$$

Following a similar procedure, it can be shown that if $k>n$

$$
R_{X, X}[k, n]=\left(\frac{1}{2}\right)^{k-n} R_{X, X}[k, k]
$$

Hence in general

$$
R_{X, X}[k, n]=\left(\frac{1}{2}\right)^{|n-k|} R_{X, X}[m, m], \text { where } m=\min (n, k)
$$

Note that $R_{X, X}[m, m]$ can be found as follows:

$$
\begin{aligned}
R_{X, X}[m, m] & =E\left[X^{2}[m]\right]=E\left[\left(\frac{1}{2} X[m-1]+E[m]\right)^{2}\right] \\
& =\frac{1}{4} R_{X, X}[m-1, m-1]+E[X[m-1] E[m]]+E\left[E^{2}[m]\right]
\end{aligned}
$$

Since $X[m-1]$ and $E[m]$ are uncorrelated, we have the following recursion

$$
\begin{aligned}
R_{X, X}[m, m] & =\frac{1}{4} R_{X, X}[m-1, m-1]+\sigma_{E}^{2} \\
\Rightarrow R_{X, X}[m, m] & =\left(\frac{1}{4}\right)^{m} R_{X, X}[0,0]+\sigma_{E}^{2} \sum_{i=0}^{m-1}\left(\frac{1}{4}\right)^{i} .
\end{aligned}
$$

Note that since $X(0)=0, R_{X, X}(0,0)=0$. Therefore

$$
\begin{aligned}
R_{X, X}[m, m] & =\sigma_{E}^{2} \frac{1-(1 / 4)^{m}}{1-1 / 4}=\frac{4 \sigma_{E}^{2}}{3}\left(1-(1 / 4)^{m}\right) \\
\Rightarrow R_{X, X}[k, n] & =\frac{4 \sigma_{E}^{2}}{3}\left(1-(1 / 4)^{m}\right)\left(\frac{1}{2}\right)^{|n-k|}
\end{aligned}
$$

Since $m=\min (n, k)$ is not a function of $n-k$, the process is not WSS.

Problem 10.20

(a)

$$
\begin{aligned}
E\left[\epsilon^{2}\right] & =E\left[\left(Y[n+1]-\sum_{k=1}^{p} a_{k} Y[n-k+1]\right)^{2}\right] \\
& =E\left[Y^{2}[n+1]\right]-2 \sum_{k=1}^{p} a_{k} E[Y[n+1] Y[n+1-k]] \\
& +\sum_{k=1}^{p} \sum_{m=1}^{p} a_{k} a_{m} E[Y[n+1-k] Y[n+1-m]] \\
& =R_{Y, Y}[0]-2 \sum_{k=1}^{p} a_{k} R_{Y, Y}[k]+\sum_{k=1}^{p} \sum_{m=1}^{p} a_{k} a_{m} R_{Y, Y}[m-k]
\end{aligned}
$$

To simplify the notation, introduce the following vectors and matrices:

$$
\begin{aligned}
& \mathbf{r}=\left[\begin{array}{llll}
R_{Y, Y}[1] & R_{Y, Y}[2] & \ldots & R_{Y, Y}[p]
\end{array}\right]^{T}, \\
& \mathbf{a}=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{p}
\end{array}\right]^{T}, \\
& \mathbf{R}=p \mathrm{x} p \text { matrix whose }(k, m) \text { th element is } R_{Y, Y}[m-k] .
\end{aligned}
$$

Then the mean squared error is

$$
E\left[\epsilon^{2}\right]=R_{Y, Y}[0]-2 \mathbf{r}^{T} \mathbf{a}+\mathbf{a}^{T} \mathbf{R} \mathbf{a} .
$$

(b)

$$
\begin{aligned}
\nabla_{\mathbf{a}} & =-2 \mathbf{r}+2 \mathbf{R a}=0 \\
\Rightarrow \mathbf{a} & =\mathbf{R}^{-1} \mathbf{r}
\end{aligned}
$$

