MVE135 Random Processes with Applications Fall 2010 Written Exam Monday 10 January 2011 8.30 am - 12.30 am

TEACHER AND JOUR: Patrik Albin.

AIDS: Beta.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively.

Task 1. Find the conditional PDF $f_{X|2 < X \le 4}(x)$ for a continuous random variable X with PDF $f_X(x) = 2 e^{-2x}$ for $x \ge 0$ and $f_X(x) = 0$ for x < 0. (5 points)

Task 2. Let X and Y be jointly Gaussian random variables with given expected values $\mu_X = E[X]$ and $\mu_Y = E[Y]$, given variances $\sigma_X^2 = E[(X - \mu_X)^2]$ and $\sigma_Y^2 = E[(Y - \mu_Y)^2]$ and given correlation coefficient $\rho_{XY} = E[(X - \mu_X)(Y - \mu_Y)]/(\sigma_X \sigma_Y)$. Find a constant c (expressed in terms of the given information) such that X is independent of Y - cX. (5 points)

Task 3. Let $X(t), t \in \mathbb{R}$, be a WSS random process and define two new processes Y(t), $t \in \mathbb{R}$, and $Z(t), t \in \mathbb{R}$, by Y(t) = X(t+1) and Z(t) = X(-t), respectively. Is it true that the crosscorrelation functions $R_{XY}(t, t+\tau) = E[X(t)Y(t+\tau)]$ and $R_{XZ}(t, t+\tau) = E[X(t)Z(t+\tau)]$ do not depend on t but only on τ ? (5 points)

Task 4. Exemplify that two random processes X_n , $n \in \mathbb{Z}$, and Y_n , $n \in \mathbb{Z}$, can be quite different to their appearance, but still share the same mean function and autocorrelation function (i.e., $E[X_n] = E[Y_n]$ and $E[X_m X_n] = E[Y_m Y_n]$ for all $m, n \in \mathbb{Z}$). (5 points)

Task 5. Write a short essay about the topic of nonparametric spectral estimation [that is, the problem to estimate the power spectral density of a random process from an observed trajetory/realization of the process (but no information other than that about the process)]. **(5 points)**

Task 6. Discuss when a so called Wiener filter can give a perfect result, that is, when the filter can produce an outsignal that is perfectly equal to the wanted signal Z(t) from a noise disturbed insignal X(t) = Z(t) + N(t). (5 points)

Good Luck!

MVE135 Random Processes with Applications Fall 2010 Solutions to Written Exam Monday 10 January 2011

Task 1. $f_{X|2 < X \le 4}(x) = \frac{d}{dx} \Pr(X \le x | 2 < X \le 4) = \frac{d}{dx} \Pr(2 < X \le x) / \Pr(2 < X \le 4) = \frac{d}{dx} \int_2^x f_X(y) \, dy / \Pr(2 < X \le 4) = f_X(x) / \Pr(2 < X \le 4)$ [this is Eq. 3.41 in the book] = $2 e^{-2x} / (e^{-4} - e^{-8})$ for $x \in (2, 4]$, while $f_X(x) = 0$ for all other values of x.

Task 2. $\operatorname{Cov}(X, Y - cX) = \operatorname{Cov}(X, Y) - c\operatorname{Var}(X) = \rho_{XY}\sigma_X\sigma_Y - c\sigma_X^2 = 0 \implies c = \rho_{XY}\sigma_Y/\sigma_X.$

Task 3. $R_{XY}(t,t+\tau) = E[X(t)Y(t+\tau)] = E[X(t)X(t+1+\tau)] = R_{XX}(t,t+1+\tau) = R_{XX}(1+\tau)$ does not depend on t while $R_{XZ}(t,t+\tau) = E[X(t)Z(t+\tau)] = E[X(t)X(-t-\tau)] = R_{XX}(t,-t-\tau) = R_{XX}(2t-\tau)$ depends on t in general.

Task 4. Take X_n , $n \in \mathbb{Z}$, to be independent random variables that can take the values -1 and 1 with probabilities 1/2 each, while Y_n , $n \in \mathbb{Z}$, are independent zero-mean unit-variance normal random variables.

Task 5. See Section 10.4.1 in the book.

Task 6. When $S_{ZZ}(f)S_{NN}(f) = 0$.