## MVE135 Random Processes with Applications Fall 2010 Written Exam Monday 10 January 20118.30 am - 12.30 am

## Teacher and Jour: Patrik Albin.

Aids: Beta.
Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.

Task 1. Find the conditional $\operatorname{PDF} f_{X \mid 2<X \leq 4}(x)$ for a continuous random variable $X$ with PDF $f_{X}(x)=2 \mathrm{e}^{-2 x}$ for $x \geq 0$ and $f_{X}(x)=0$ for $x<0$. (5 points)

Task 2. Let $X$ and $Y$ be jointly Gaussian random variables with given expected values $\mu_{X}=E[X]$ and $\mu_{Y}=E[Y]$, given variances $\sigma_{X}^{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]$ and $\sigma_{Y}^{2}=$ $E\left[\left(Y-\mu_{Y}\right)^{2}\right]$ and given correlation coefficient $\rho_{X Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] /\left(\sigma_{X} \sigma_{Y}\right)$. Find a constant $c$ (expressed in terms of the given information) such that $X$ is independent of $Y-c X$. (5 points)

Task 3. Let $X(t), t \in \mathbb{R}$, be a WSS random process and define two new processes $Y(t)$, $t \in \mathbb{R}$, and $Z(t), t \in \mathbb{R}$, by $Y(t)=X(t+1)$ and $Z(t)=X(-t)$, respectively. Is it true that the crosscorrelation functions $R_{X Y}(t, t+\tau)=E[X(t) Y(t+\tau)]$ and $R_{X Z}(t, t+\tau)=$ $E[X(t) Z(t+\tau)]$ do not depend on $t$ but only on $\tau$ ? (5 points)

Task 4. Exemplify that two random processes $X_{n}, n \in \mathbb{Z}$, and $Y_{n}, n \in \mathbb{Z}$, can be quite different to their appearance, but still share the same mean function and autocorrelation function (i.e., $E\left[X_{n}\right]=E\left[Y_{n}\right]$ and $E\left[X_{m} X_{n}\right]=E\left[Y_{m} Y_{n}\right]$ for all $m, n \in \mathbb{Z}$ ). (5 points)

Task 5. Write a short essay about the topic of nonparametric spectral estimation [that is, the problem to estimate the power spectral density of a random process from an observed trajetory/realization of the process (but no information other than that about the process)].

Task 6. Discuss when a so called Wiener filter can give a perfect result, that is, when the filter can produce an outsignal that is perfectly equal to the wanted signal $Z(t)$ from a noise disturbed insignal $X(t)=Z(t)+N(t)$. (5 points)

## Good Luck!

## MVE135 Random Processes with Applications Fall 2010

 Solutions to Written Exam Monday 10 January 2011Task 1. $f_{X \mid 2<X \leq 4}(x)=\frac{d}{d x} \operatorname{Pr}(X \leq x \mid 2<X \leq 4)=\frac{d}{d x} \operatorname{Pr}(2<X \leq x) / \operatorname{Pr}(2<X \leq 4)=$ $\frac{d}{d x} \int_{2}^{x} f_{X}(y) d y / \operatorname{Pr}(2<X \leq 4)=f_{X}(x) / \operatorname{Pr}(2<X \leq 4)$ [this is Eq. 3.41 in the book] $=$ $2 \mathrm{e}^{-2 x} /\left(\mathrm{e}^{-4}-\mathrm{e}^{-8}\right)$ for $x \in(2,4]$, while $f_{X}(x)=0$ for all other values of $x$.

Task 2. $\operatorname{Cov}(X, Y-c X)=\operatorname{Cov}(X, Y)-c \operatorname{Var}(X)=\rho_{X Y} \sigma_{X} \sigma_{Y}-c \sigma_{X}^{2}=0 \Longrightarrow c=$ $\rho_{X Y} \sigma_{Y} / \sigma_{X}$.

Task 3. $R_{X Y}(t, t+\tau)=E[X(t) Y(t+\tau)]=E[X(t) X(t+1+\tau)]=R_{X X}(t, t+1+\tau)=$ $R_{X X}(1+\tau)$ does not depend on $t$ while $R_{X Z}(t, t+\tau)=E[X(t) Z(t+\tau)]=E[X(t) X(-t-$ $\tau)]=R_{X X}(t,-t-\tau)=R_{X X}(2 t-\tau)$ depends on $t$ in general.

Task 4. Take $X_{n}, n \in \mathbb{Z}$, to be independent random variables that can take the values -1 and 1 with probabilities $1 / 2$ each, while $Y_{n}, n \in \mathbb{Z}$, are independent zero-mean unit-variance normal random variables.

Task 5. See Section 10.4.1 in the book.
Task 6. When $S_{Z Z}(f) S_{N N}(f)=0$.

