MVE135 Random Processes with Applications Fall 2010 Written exam Monday 15 August 20118.30 am - 12.30 am

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Beta.
Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively. Good luck!

Task 1. Find analytic explicit expressions for the value of the integral $\int_{-\infty}^{\infty} \exp \left(a x^{2}+\right.$ $b x) d x$ for all different values of the constants $a, b \in \mathbb{R}$.

Task 2. Let X and Y be independent zero-mean and unit-variance Gaussian random variables. Find the PDF of the random variable (U, V) given by $U=X \cos (\theta)-Y \sin (\theta)$ and $V=X \sin (\theta)+Y \cos (\theta)$ for a constant $\theta \in \mathbb{R}$. (5 points)

Task 3. Find the conditional probability $P[X(1)=1 \mid X(2)=2]$ for a Poisson process $X(t)$ with intensity $\lambda>0$. (5 points)

Task 4. Find a stationary process that is not WSS. Find a WSS process that is not stationary. (5 points)

Task 5. A continuous time WSS process $X(t)$ with auto-correlation function $R_{X X}(\tau)$ is filtered through a filter with impulse response $h_{1}(t)$. The output of this filter $Y(t)$ is filtered through a second filter with impulse response $h_{2}(t)$ that has output $Z(t)$. Find the cross-correlation function between $X(t)$ and $Z(t)$. (5 points)

Task 6. In a digital communication system either a known deterministic signal $s(t)$ is sent (representing 1) or the zero signal is sent (representing 0). The sent signal travels on a noisy channel where a Gaussian white noise disturbance process $N(t)$ with PSD $N_{0} / 2$ is added. The recived signal is thus either $X(t)=s(t)+N(t)$ (if $s(t)$ is sent) or $X(t)=N(t)$ (if 0 is sent). The task of the reciver is to at a certain time t_{0} try to decide whether it is $s(t)$ ot 0 that has been sent. That is done by first filtering the recived signal through a filter with impulse response $h(t)$, the output of which is $Y(t)=X(t) \star h(t)$, and then decide that $s(t)$ is sent if $Y(t) \geq \frac{1}{2} s(t) \star h(t)$ and that 0 is sent if $Y(t)<\frac{1}{2} s(t) \star h(t)$. The two decision error probabilities are defined as

$$
P[\text { decides } s(t) \text { sent when } 0 \text { sent }]=P\left[N(t) \star h(t) \geq \frac{1}{2} s(t) \star h(t)\right]
$$

and

$$
\begin{aligned}
P[\text { decides } 0 \text { sent when } s(t) \text { sent }] & =P\left[s(t) \star h(t)+N(t) \star h(t)<\frac{1}{2} s(t) \star h(t)\right] \\
& =P\left[N(t) \star h(t)<-\frac{1}{2} s(t) \star h(t)\right]
\end{aligned}
$$

Show that these error probabilities have a common smallest possible value

$$
1-\Phi\left(\sqrt{\frac{\int_{-\infty}^{\infty} s(t)^{2} d t}{2 N_{0}}}\right)
$$

when $h(t)$ is choosen optimally (to minimize these probabilities).

MVE135 Random Processes with Applications Fall 2010 Solutions to written exam Monday 15 August 2011

Task 1. For $a>0$ we have $\mathrm{e}^{a x^{2}+b x} \rightarrow \infty$ as $x \rightarrow \pm \infty$ so that the value of the integral is ∞. For $a=0$ we have $\mathrm{e}^{b x} \rightarrow \infty$ as $x \rightarrow \infty$ if $b>0$, $\mathrm{e}^{b x}=1$ for all x if $b=0$, while $\mathrm{e}^{b x} \rightarrow \infty$ as $x \rightarrow-\infty$ if $b<0$ so that again the integral equals ∞. For $a<0$ the value of the integral is $\sqrt{-\pi / a} \mathrm{e}^{-b^{2} /(4 a)}$ by Exercise 3.9 in the book of Miller and Childers.

Task 2. The random variables U and V are independent zero-mean and unit-variance Gaussian by Exercise 5.28 in the book of Miller and Childers.

Task 3. We have $P[X(1)=1 \mid X(2)=2]=P[X(1)=1, X(2)=2] / P[X(2)=2]=$ $P[X(1)=1, X(2)-X(1)=1] / P[X(2)=2]=P[X(1)=1] P[X(2)-X(1)=1] / P[X(2)$ $=2]=(P[X(1)=1])^{2} / P[X(2)=2]=\left(\left(\lambda^{1} /(1!)\right) \mathrm{e}^{-\lambda}\right)^{2} /\left(\left((2 \lambda)^{2} /(2!)\right) \mathrm{e}^{-2 \lambda}\right)=1 / 2$.

Task 4. A stationary process with infinite variance is not WSS. A sequence of zeromean unit-variance uncorrelated random variables is a discrete time WSS process, but is not stationary unless the CDF of all members of the sequence coincide.

Task 5. We have

$$
\begin{aligned}
R_{X Z}(\tau) & =E[X(t) Z(t+\tau)] \\
& =E\left[X(t) \int_{-\infty}^{\infty} Y(t+\tau-s) h_{2}(s) d s\right] \\
& =E\left[X(t) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(t+\tau-s-r) h_{2}(s) h_{1}(r) d s d r\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[X(t) X(t+\tau-s-r)] h_{2}(s) h_{1}(r) d s d r \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{X X}(\tau-s-r) h_{2}(s) h_{1}(r) d s d r \\
& =R_{X X}(\tau) \star h_{1}(\tau) \star h_{2}(\tau) .
\end{aligned}
$$

Task 6. As $N(t) \star h(t)$ is zero-mean Gaussian it is clear from symmetry that the two error probabilities agree with a common value

$$
1-\Phi\left(\frac{\frac{1}{2} s(t) \star h(t)}{\sqrt{\text { Variance }[N(t) \star h(t)]}}\right)=1-\Phi\left(\frac{\frac{1}{2} s(t) \star h(t)}{\sqrt{N_{0} \int_{-\infty}^{\infty} s(t)^{2} d t / 2}}\right) .
$$

This error probability is minimized when the argument of the function $1-\Phi(x)$ is maximized. By the theory for the matched filter the maximal valued of that argument is the argument claimed in the task, which in turn is achived for $h(t)=s\left(t_{0}-t\right)$.

