MVE135 Random Processes with Applications Written Exam Monday 9 January 2012 8.30 am – 12.30 pm

TEACHER AND JOUR: Patrik Albin, telephone 070 6945709. AIDS: Beta.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively.

Task 1. Calculate E(X|X>0) for a random variable $X \sim N(0,1)$. (5 points)

Task 2. Find the PDF $f_X(x)$ of X when (X, Y) is a pair of random variables with joint PDF $f_{X,Y}(x,y) = \frac{1}{\sqrt{3}\pi} e^{-2(x^2 - xy + y^2)/3}$ for $x, y \in \mathbb{R}$. (5 points)

Task 3. Let X(t) be a continuous time WSS random process defined for all real times $t \in \mathbb{R}$. Is the time reversed process Y(t) = X(-t) also WSS? (The answer must be motivated!) (5 points)

Task 4. Calculate the probability P(X(3) > X(2) > X(1)) for a Poisson process X(t) with rate λ . (5 points).

Task 5. For which ferquency $f_0 > 1$ does the lowpass WSS random process X(t) with PSD $S_{XX}(f) = 1$ for $|f| \le f_0$ and $S_{XX}(f) = 0$ otherwise have the same average normalized power $R_{XX}(0)$ as the average normalized power $R_{YY}(0)$ of the bandpass WSS random process Y(t) with PSD $S_{YY}(f) = 1$ for $|f - f_0| \le 1$, $S_{YY}(f) = 1$ for $|f + f_0| \le 1$ and $S_{YY}(f) = 0$ otherwise? (5 points)

Task 6. Let e[n] be discrete time Gaussian noise with zero mean and unit variance. Given a constant $a \in (-1, 1)$, how can the Fourier transform (/frequency analysis) techniques of Chapter 11 in the book be employed to establish that the discrete time random process $X[n] = \sum_{k=0}^{\infty} a^k e[n-k]$ has autocorrelation function $R_{XX}[n] = a^{|n|}/((1-a^2))$? (The required calculations need not be carried out in full detail - it is sufficient to just outline what should be done.) (5 points)

Good Luck!

MVE135 Random Processes with Applications

Solutions to Written Exam Monday 9 January 2012

Task 1. We have $f_{X|X>0}(x) = f_X(x)/P(X>0) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}/(1/2) = \sqrt{2/\pi} e^{-x^2/2}$ for x > 0, so that $E(X|X>0) = \int_{-\infty}^{\infty} x f_{X|X>0}(x) dx = \int_{0}^{\infty} x \sqrt{2/\pi} e^{-x^2/2} dx = \sqrt{2/\pi}$.

Task 2. We have $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \int_{-\infty}^{\infty} \frac{1}{\sqrt{3\pi}} e^{-2(x^2 - xy + y^2)/3} \, dy = \int_{-\infty}^{\infty} \frac{1}{\sqrt{3\pi}} e^{-2(y - x/2)^2/3 - x^2/2} \, dy = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}(\sqrt{3}/2)} e^{-(y - x/2)^2/(2(\sqrt{3}/2)^2)} \, dy = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \int_{-\infty}^{\infty} f_{N(x/2,(\sqrt{3}/2)^2)}(y) \, dy = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \text{ for } x \in \mathbb{R}.$

Task 3. We have $\mu_Y(t) = E(Y(t)) = E(X(-t)) = \mu_X(-t) = \mu_X = \text{constant}$ and $R_{YY}(t, t+\tau) = E(Y(t)Y(t+\tau)) = E(X(-t)X(-(t+\tau))) = R_{XX}(-t, -(t+\tau)) = R_X(-(t+\tau)) = R_X(-(t+\tau))$

 $\begin{array}{l} \mbox{Task 4. } P(X(3) > X(2) > X(1)) = P(X(3) - X(2) > 0, X(2) - X(1) > 0) = P(X(3) - X(2) > 0) \\ P(X(2) - X(1) > 0) = P(X(1) > 0)^2 = (1 - \mathrm{e}^{-\lambda})^2. \end{array}$

Task 5. As $R_{XX}(0) = \int_{\infty}^{\infty} S_{XX}(f) df = 2 f_0$ and $R_{YY}(0) = \int_{\infty}^{\infty} S_{YY}(f) df = 4$ we must have $f_0 = 2$.

Task 6. See Example 11.3 in the book.