MVE135 Random Processes with Applications Written Exam Monday 9 January 20128.30 am - 12.30 pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Beta.
Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.

Task 1. Calculate $E(X \mid X>0)$ for a random variable $X \sim \mathrm{~N}(0,1)$. (5 points)

Task 2. Find the $\operatorname{PDF} f_{X}(x)$ of X when (X, Y) is a pair of random variables with joint PDF $f_{X, Y}(x, y)=\frac{1}{\sqrt{3} \pi} \mathrm{e}^{-2\left(x^{2}-x y+y^{2}\right) / 3}$ for $x, y \in \mathbb{R}$. (5 points)

Task 3. Let $X(t)$ be a continuous time WSS random process defined for all real times $t \in \mathbb{R}$. Is the time reversed process $Y(t)=X(-t)$ also WSS? (The answer must be motivated!) (5 points)

Task 4. Calculate the probability $P(X(3)>X(2)>X(1))$ for a Poisson process $X(t)$ with rate λ. (5 points).

Task 5. For which ferquency $f_{0}>1$ does the lowpass WSS random process $X(t)$ with PSD $S_{X X}(f)=1$ for $|f| \leq f_{0}$ and $S_{X X}(f)=0$ otherwise have the same average normalized power $R_{X X}(0)$ as the average normalized power $R_{Y Y}(0)$ of the bandpass WSS random process $Y(t)$ with $\operatorname{PSD} S_{Y Y}(f)=1$ for $\left|f-f_{0}\right| \leq 1, S_{Y Y}(f)=1$ for $\left|f+f_{0}\right| \leq 1$ and $S_{Y Y}(f)=0$ otherwise? (5 points)

Task 6. Let $e[n]$ be discrete time Gaussian noise with zero mean and unit variance. Given a constant $a \in(-1,1)$, how can the Fourier transform (/frequency analysis) techniques of Chapter 11 in the book be employed to establish that the discrete time random process $X[n]=\sum_{k=0}^{\infty} a^{k} e[n-k]$ has autocorrelation function $R_{X X}[n]=a^{|n|} /$ $\left(1-a^{2}\right) ?$ (The required calculations need not be carried out in full detail - it is sufficient to just outline what should be done.) (5 points)

Good Luck!

MVE135 Random Processes with Applications

Solutions to Written Exam Monday 9 January 2012

Task 1. We have $f_{X \mid X>0}(x)=f_{X}(x) / P(X>0)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} /(1 / 2)=\sqrt{2 / \pi} \mathrm{e}^{-x^{2} / 2}$ for $x>0$, so that $E(X \mid X>0)=\int_{-\infty}^{\infty} x f_{X \mid X>0}(x) d x=\int_{0}^{\infty} x \sqrt{2 / \pi} \mathrm{e}^{-x^{2} / 2} d x=\sqrt{2 / \pi}$.

Task 2. We have $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{-\infty}^{\infty} \frac{1}{\sqrt{3} \pi} \mathrm{e}^{-2\left(x^{2}-x y+y^{2}\right) / 3} d y=\int_{-\infty}^{\infty} \frac{1}{\sqrt{3} \pi}$ $\mathrm{e}^{\left.-2(y-x / 2)^{2}\right) / 3-x^{2} / 2} d y=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}(\sqrt{3} / 2)} \mathrm{e}^{\left.-(y-x / 2)^{2}\right) /\left(2(\sqrt{3} / 2)^{2}\right)} d y=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}$ $\int_{-\infty}^{\infty} f_{\mathrm{N}\left(x / 2,(\sqrt{3} / 2)^{2}\right)}(y) d y=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}$ for $x \in \mathbb{R}$.

Task 3. We have $\mu_{Y}(t)=E(Y(t))=E(X(-t))=\mu_{X}(-t)=\mu_{X}=$ constant and $R_{Y Y}(t, t+\tau)=E(Y(t) Y(t+\tau))=E(X(-t) X(-(t+\tau)))=R_{X X}(-t,-(t+\tau))=R_{X}(-(t$ $+\tau)-(-t))=R_{X}(-\tau)=R_{X}(\tau)$ a function of τ only, so that $Y(t)$ is also WSS.

Task 4. $P(X(3)>X(2)>X(1))=P(X(3)-X(2)>0, X(2)-X(1)>0)=P(X(3)-$ $X(2)>0) P(X(2)-X(1)>0)=P(X(1)>0)^{2}=\left(1-\mathrm{e}^{-\lambda}\right)^{2}$.

Task 5. As $R_{X X}(0)=\int_{\infty}^{\infty} S_{X X}(f) d f=2 f_{0}$ and $R_{Y Y}(0)=\int_{\infty}^{\infty} S_{Y Y}(f) d f=4$ we must have $f_{0}=2$.

Task 6. See Example 11.3 in the book.

