MVE135 Random Processes with Applications

Written Exam Thursday 17 January 20132 pm - 6 pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Beta.
Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.

Task 1. Find $E[X \mid X>1]$ for an exponentially distributed random variable X with $E[X]=1 . \quad(5$ points)

Task 2. Find the PDF of $Z=\sqrt{X^{2}+Y^{2}}$ when X and Y are independent standard normal random variables. (5 points)

Task 3. Let $X(t)$ and $Y(t)$ be independent Poisson processes, both with rates 1. Define $Z(t)=X(t)+Y(t)$. Find $E[X(1) \mid Z(2)=2]$. (5 points)

Task 4. Let $X(t)$ be a Poisson process with mean function $\mu_{X}(t)=\lambda t$ and autocovariance function $C_{X X}(s, t)=\lambda \min (s, t)$. Show that the process $Y(t)=(X(t)-\lambda t) / \sqrt{t}$ is so called group-WSS with respect to multiplication on $(0, \infty)$, which is to say that $E[Y(h t)]=E[Y(t)]$ and $E[Y(h s) Y(h t)]=E[Y(s) Y(t)]$ for $h, s, t>0 . \quad$ (5 points).

Task 5. Let $X(t)$ be a continuous-time strict sense stationary Gaussian process with zero mean and autocorrelation function $R_{X X}(\tau)=\mathrm{e}^{-|\tau|}$. Show that the process $Y(t)=$ $\mathrm{e}^{X(t)^{2}}$ is strict sense stationary but not WSS. (5 points)

Task 6. A WSS discrete-time random process $X(n)$ with PSD $S_{X X}(f)$ is input to two different LTI systems with transfer functions $H_{1}(f)$ and $H_{2}(f)$, respectively. Find the cross spectral density $S_{Y_{1} Y_{2}}(f)$ between the outputs $Y_{1}(n)$ and $Y_{2}(n)$ from the two LTI systems. (5 points)

Good Luck!

MVE135 Random Processes with Applications

Solutions to Written Exam Thursday 17 January 2013

Task 1. As $f_{X}(x)=\mathrm{e}^{-x}$ for $x \geq 0$ we have $f_{X \mid X>1}(x)=f_{X}(x) / \operatorname{Pr}(X>1)$ for $x>1$, where $\operatorname{Pr}(X>1)=\int_{1}^{\infty} \mathrm{e}^{-x} d x=\mathrm{e}^{-1}$, so that $E[X \mid X>1]=\int_{1}^{\infty} x \mathrm{e}^{1-x} d x=$ $\int_{1}^{\infty}(x-1) \mathrm{e}^{1-x} d x+\int_{1}^{\infty} \mathrm{e}^{1-x} d x=E[X]+1=2$.

Task 2. We have $f_{Z}(z)=\frac{d}{d z} P(Z \leq z)=\frac{d}{d z} P\left(\sqrt{X^{2}+Y^{2}} \leq z\right)=\frac{d}{d z} \iint_{\left\{(x, y) \in \mathbb{R}^{2}: \sqrt{x^{2}+y^{2}} \leq z\right\}}$ $f_{X, Y}(x, y) d x d y=\frac{d}{d z} \iint_{\left\{(x, y) \in \mathbb{R}^{2}: \sqrt{\left.x^{2}+y^{2} \leq z\right\}}\right.} \frac{1}{2 \pi} \mathrm{e}^{-\left(x^{2}+y^{2}\right) / 2} d x d y=\frac{d}{d z} \int_{r=0}^{r=z} \int_{\theta=0}^{\theta=2 \pi} \frac{1}{2 \pi} \mathrm{e}^{-r^{2} / 2}$ $r d r d \theta=\frac{d}{d z}\left(1-\mathrm{e}^{-z^{2} / 2}\right)=z \mathrm{e}^{-z^{2} / 2}$ for $z \geq 0$.

Task 3. We have $P(X(1)=k \mid Z(2)=2)=P(X(1)=k, X(2)+Y(2)=2) / P(X(2)+$ $Y(2)=2)=[P(X(1)=k, X(2)+Y(2)=2, Y(2)=0)+P(X(1)=k, X(2)+Y(2)=$ $2, Y(2)=1)+P(X(1)=k, X(2)+Y(2)=2, Y(2)=2)] /[P(X(2)=2, Y(2)=0)+$ $P(X(2)=1, Y(2)=1)+P(X(2)=0, Y(2)=2)]=[P(X(1)=k) P(X(2)-X(1)=$ $2-k) P(Y(2)=0)+P(X(1)=k) P(X(2)-X(1)=1-k) P(Y(2)=1)+P(X(1)=$ k) $P(X(2)-X(1)=-k) P(Y(2)=2)] /\left[\frac{1}{2} \mathrm{e}^{-2}+\mathrm{e}^{-2}+\frac{1}{2} \mathrm{e}^{-2}\right]=\frac{1}{2} \mathrm{e}[P(X(1)=k) P(X(1)=$ $\left.2-k)+P(X(1)=k) P(X(1)=1-k)+P(X(1)=k) P(X(1)=-k) \frac{1}{2}\right]=\mathrm{e}^{-1}[\delta(k)+$ $\left.\delta(k-1)+\frac{1}{4} \delta(k-2)\right]$, so that $E[X(1) \mid Z(2)=2]=\mathrm{e}^{-1}\left[1 \cdot 0+1 \cdot 1+\frac{1}{4} \cdot 2\right]=\frac{3}{2} \mathrm{e}^{-1}$.

Task 4. We have $E[Y(h t)]=E[(X(h t)-\lambda h t) / \sqrt{h t}]=\left(\mu_{X}(h t)-\lambda h t\right) / \sqrt{h t}=0=$ $E[Y(t)]$ (where the last equality follows from taking $h=1$) and $E[Y(h s) Y(h t)]=$ $C_{X X}(h s, h t) / \sqrt{h^{2} s t}=\lambda \min (h s, h t) / \sqrt{h^{2} s t}=\lambda \min (\sqrt{s / t}, \sqrt{t / s})=E[Y(s) Y(t)]$.

Task 5. As $X(t)$ is strict sense stationary we have $P\left(Y\left(t_{1}+h\right) \leq x_{1}, \ldots, Y\left(t_{n}+h\right) \leq\right.$ $\left.x_{n}\right)=0=P\left(Y\left(t_{1}\right) \leq x_{1}, \ldots, Y\left(t_{n}\right) \leq x_{n}\right)$ if $\min \left(x_{1}, \ldots, x_{n}\right) \leq 0$ while $P\left(Y\left(t_{1}+\right.\right.$ $\left.h) \leq x_{1}, \ldots, Y\left(t_{n}+h\right) \leq x_{n}\right)=P\left(-\sqrt{\ln \left(x_{1}\right)} \leq X\left(t_{1}+h\right) \leq \sqrt{\ln \left(x_{1}\right)}, \ldots,-\sqrt{\ln \left(x_{n}\right)} \leq\right.$ $\left.X\left(t_{n}+h\right) \leq \sqrt{\ln \left(x_{n}\right)}\right)=P\left(-\sqrt{\ln \left(x_{1}\right)} \leq X\left(t_{1}\right) \leq \sqrt{\ln \left(x_{1}\right)}, \ldots,-\sqrt{\ln \left(x_{n}\right)} \leq X\left(t_{n}\right) \leq\right.$ $\left.\sqrt{\ln \left(x_{n}\right)}\right)=P\left(Y\left(t_{1}\right) \leq x_{1}, \ldots, Y\left(t_{n}\right) \leq x_{n}\right)$ otherwise, so that also $Y(t)$ is strict sense stationary. However, as $\mu_{Y}(t)=E[Y(t)]=E\left[\mathrm{e}^{X(t)^{2}}\right]=\int_{-\infty}^{\infty} \mathrm{e}^{x^{2}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} d x=\infty$ does not exist $Y(t)$ is not WSS.

Task 6. We have $S_{Y_{1} Y_{2}}(f)=\sum_{\tau=-\infty}^{\infty} \mathrm{e}^{-j 2 \pi f \tau} E\left[\sum_{k=-\infty}^{\infty} h_{1}(k) X(n-k) \sum_{\ell=-\infty}^{\infty} h_{2}(\ell)\right.$ $X(n+\tau-\ell)]=\sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} \mathrm{e}^{-j 2 \pi f(\ell-k)} h_{1}(k) h_{2}(\ell) \sum_{\tau=-\infty}^{\infty} \mathrm{e}^{-j 2 \pi f(\tau-\ell+k)} R_{X X}(\tau-\ell+$ $k)=\overline{H_{1}(f)} H_{2}(f) S_{X X}(f)$.

