MVE135 Random Processes with Applications Written Exam Thursday 17 January 2013 2 pm – 6 pm

TEACHER AND JOUR: Patrik Albin, telephone 070 6945709. AIDS: Beta.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively.

Task 1. Find E[X|X > 1] for an exponentially distributed random variable X with E[X] = 1. (5 points)

Task 2. Find the PDF of $Z = \sqrt{X^2 + Y^2}$ when X and Y are independent standard normal random variables. (5 points)

Task 3. Let X(t) and Y(t) be independent Poisson processes, both with rates 1. Define Z(t) = X(t) + Y(t). Find E[X(1)|Z(2) = 2]. (5 points)

Task 4. Let X(t) be a Poisson process with mean function $\mu_X(t) = \lambda t$ and autocovariance function $C_{XX}(s,t) = \lambda \min(s,t)$. Show that the process $Y(t) = (X(t) - \lambda t)/\sqrt{t}$ is so called group-WSS with respect to multiplication on $(0,\infty)$, which is to say that E[Y(ht)] = E[Y(t)] and E[Y(hs)Y(ht)] = E[Y(s)Y(t)] for h, s, t > 0. (5 points).

Task 5. Let X(t) be a continuous-time strict sense stationary Gaussian process with zero mean and autocorrelation function $R_{XX}(\tau) = e^{-|\tau|}$. Show that the process $Y(t) = e^{X(t)^2}$ is strict sense stationary but not WSS. (5 points)

Task 6. A WSS discrete-time random process X(n) with PSD $S_{XX}(f)$ is input to two different LTI systems with transfer functions $H_1(f)$ and $H_2(f)$, respectively. Find the cross spectral density $S_{Y_1Y_2}(f)$ between the outputs $Y_1(n)$ and $Y_2(n)$ from the two LTI systems. (5 points)

MVE135 Random Processes with Applications

Solutions to Written Exam Thursday 17 January 2013

Task 1. As $f_X(x) = e^{-x}$ for $x \ge 0$ we have $f_{X|X>1}(x) = f_X(x)/Pr(X > 1)$ for x > 1, where $Pr(X > 1) = \int_1^\infty e^{-x} dx = e^{-1}$, so that $E[X|X>1] = \int_1^\infty x e^{1-x} dx = \int_1^\infty (x-1) e^{1-x} dx + \int_1^\infty e^{1-x} dx = E[X] + 1 = 2.$

Task 2. We have $f_Z(z) = \frac{d}{dz} P(Z \le z) = \frac{d}{dz} P(\sqrt{X^2 + Y^2} \le z) = \frac{d}{dz} \iint_{\{(x,y) \in \mathbb{R}^2: \sqrt{x^2 + y^2} \le z\}} f_{X,Y}(x,y) \, dx \, dy = \frac{d}{dz} \iint_{\{(x,y) \in \mathbb{R}^2: \sqrt{x^2 + y^2} \le z\}} \frac{1}{2\pi} \, \mathrm{e}^{-(x^2 + y^2)/2} \, dx \, dy = \frac{d}{dz} \int_{r=0}^{r=z} \int_{\theta=0}^{\theta=2\pi} \frac{1}{2\pi} \, \mathrm{e}^{-r^2/2} r \, dr \, d\theta = \frac{d}{dz} \left(1 - \mathrm{e}^{-z^2/2}\right) = z \, \mathrm{e}^{-z^2/2} \text{ for } z \ge 0.$

Task 3. We have $P(X(1) = k | Z(2) = 2) = P(X(1) = k, X(2) + Y(2) = 2)/P(X(2) + Y(2) = 2) = [P(X(1) = k, X(2) + Y(2) = 2, Y(2) = 0) + P(X(1) = k, X(2) + Y(2) = 2, Y(2) = 1) + P(X(1) = k, X(2) + Y(2) = 2, Y(2) = 2)]/[P(X(2) = 2, Y(2) = 0) + P(X(2) = 1, Y(2) = 1) + P(X(2) = 0, Y(2) = 2)] = [P(X(1) = k) P(X(2) - X(1) = 2 - k) P(Y(2) = 0) + P(X(1) = k) P(X(2) - X(1) = 1 - k) P(Y(2) = 1) + P(X(1) = k) P(X(2) - X(1) = 1 - k) P(Y(2) = 1) + P(X(1) = k) P(X(2) - X(1) = 1 - k) P(Y(2) = 1) + P(X(1) = k) P(X(2) - X(1) = 1 - k) P(Y(2) = 1) + P(X(1) = k) P(X(1) = 2 - k) + P(X(1) = -k) P(Y(2) = 2)]/[\frac{1}{2}e^{-2} + e^{-2} + \frac{1}{2}e^{-2}] = \frac{1}{2}e[P(X(1) = k) P(X(1) = 2 - k) + P(X(1) = 1 - k) + P(X(1) = k) P(X(1) = -k) \frac{1}{2}] = e^{-1}[\delta(k) + \delta(k-1) + \frac{1}{4}\delta(k-2)]$, so that $E[X(1)|Z(2) = 2] = e^{-1}[1 \cdot 0 + 1 \cdot 1 + \frac{1}{4} \cdot 2] = \frac{3}{2}e^{-1}$.

Task 4. We have $E[Y(ht)] = E[(X(ht) - \lambda ht)/\sqrt{ht}] = (\mu_X(ht) - \lambda ht)/\sqrt{ht} = 0 = E[Y(t)]$ (where the last equality follows from taking h = 1) and $E[Y(hs)Y(ht)] = C_{XX}(hs, ht)/\sqrt{h^2st} = \lambda \min(hs, ht)/\sqrt{h^2st} = \lambda \min(\sqrt{s/t}, \sqrt{t/s}) = E[Y(s)Y(t)].$

Task 5. As X(t) is strict sense stationary we have $P(Y(t_1+h) \leq x_1, \ldots, Y(t_n+h) \leq x_n) = 0 = P(Y(t_1) \leq x_1, \ldots, Y(t_n) \leq x_n)$ if $\min(x_1, \ldots, x_n) \leq 0$ while $P(Y(t_1+h) \leq x_1, \ldots, Y(t_n+h) \leq x_n) = P(-\sqrt{\ln(x_1)} \leq X(t_1+h) \leq \sqrt{\ln(x_1)}, \ldots, -\sqrt{\ln(x_n)} \leq X(t_n+h) \leq \sqrt{\ln(x_n)}) = P(-\sqrt{\ln(x_1)} \leq X(t_1) \leq \sqrt{\ln(x_1)}, \ldots, -\sqrt{\ln(x_n)} \leq X(t_n) \leq \sqrt{\ln(x_n)}) = P(Y(t_1) \leq x_1, \ldots, Y(t_n) \leq x_n)$ otherwise, so that also Y(t) is strict sense stationary. However, as $\mu_Y(t) = E[Y(t)] = E[e^{X(t)^2}] = \int_{-\infty}^{\infty} e^{x^2} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \infty$ does not exist Y(t) is not WSS.

Task 6. We have $S_{Y_1Y_2}(f) = \sum_{\tau=-\infty}^{\infty} e^{-j2\pi f\tau} E[\sum_{k=-\infty}^{\infty} h_1(k)X(n-k)\sum_{\ell=-\infty}^{\infty} h_2(\ell) X(n+\tau-\ell)] = \sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} e^{-j2\pi f(\ell-k)} h_1(k) h_2(\ell) \sum_{\tau=-\infty}^{\infty} e^{-j2\pi f(\tau-\ell+k)} R_{XX}(\tau-\ell+k) = \overline{H_1(f)} H_2(f) S_{XX}(f).$