MVE135 Random Processes with Applications

Written Exam Monday 19 August 20132 pm - 6 pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Beta.
GRADES: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively. Good Luck!

Task 1. Find the conditional probability $\operatorname{Pr}(X<3 \mid X>2)$ for a continuous random variable X with $\operatorname{PDF} f_{X}(x)=c /\left(x^{2}+4\right)$. (Here c is a positive constant that is determined by the fact that $f_{X}(x)$ is a PDF.) (5 points)

Task 2. Let X and Y be zero-mean, unit variance Gaussian random variables with correlation coefficient ρ. Suppose we form two new random variables U and V using a linear trasnformation as

$$
U=a X+b Y \quad \text { and } \quad V=c X+d Y
$$

where a, b, c and d are real (non-random) coefficients/constants. Find constraints on a, b, c and d such that U and V are independent. (5 points)

Task 3. Find the probability $\operatorname{Pr}(X(1)+X(2)+X(3)>6)$ for a continuous time WSS Gaussian process $X(t)$ with mean $\mu_{X}=1$ and autocorrelation function $R_{X X}(\tau)=$ $\mathrm{e}^{-|\tau|}+1$ for $\tau \in \mathbb{R}$. (5 points)

Task 4. Find the probability $\operatorname{Pr}(X(1)+X(2)>3)$ for a Poisson process with rate 1. (5 points)

Task 5. The PSD $S_{X X}(f)$ of a continuous time WSS process $X(t)$ has the properties to be real and symmetric (=even). Prove one of these properties. (5 points)

Task 6. Give an example of a continuous time impulse response function h that has the property that when a continuous time white noise process $N(t)$ with PSD $S_{N N}(f)=N_{0} / 2$ is input to an LTI system with this impulse response, then the output process $Y(t)$ from the system has $\operatorname{PSD} S_{Y Y}(f)$ that is decreasing for $f \geq 0$ and satisfies $S_{Y Y}\left(f_{0}\right)=S_{Y Y}(0) / 2=N_{0} / 4$ for a certain frequency $f_{0}>0$. (In other words the LTI system is a lowpass filter with 3 dB bandwith f_{0}.) (5 points)

MVE135 Random Processes with Applications

Solutions to Written Exam Monday 19 August 2013

Task 1. This is a part of Exercise 3.5 in the book by Miller and Childers. The solution is available at the URL
www.math.chalmers.se/Stat/Grundutb/CTH/mve135/1011/Exercises/HomeExercise2.pdf
Task 2. This is Exercise 5.29 in the book by Miller and Childers. The solution is available at the URL
www.math.chalmers.se/Stat/Grundutb/CTH/mve135/1011/Exercises/HomeExercise4.pdf
Task 3. As $X(1)+X(2)+X(3)$ is $N\left(m, \sigma^{2}\right)$-distributed we have $\operatorname{Pr}(X(1)+X(2)+X(3)>$ $6)=\operatorname{Pr}\left(N\left(m, \sigma^{2}\right)>6\right)=1-\Phi((6-m) / \sigma)$, where $m=E[X(1)+X(2)+X(3)]=3$ and $\sigma^{2}=\operatorname{Var}(X(1)+X(2)+X(3))=3 C_{X X}(0)+4 C_{X X}(1)+2 C_{X X}(2)=3+4 \mathrm{e}^{-1}+2 \mathrm{e}^{-2}$ [using that $\left.C_{X X}(\tau)=R_{X X}(\tau)-\mu_{X}^{2}=\mathrm{e}^{-|\tau|}\right]$.

Task 4. As $X(1)+X(2)=(X(2)-X(1))+2 X(1)$ where $X(2)-X(1)$ and $X(1)$ are independent $\operatorname{Po}(1)$-distributed we have $\operatorname{Pr}(X(1)+X(2)>3)=\operatorname{Pr}((X(2)-X(1))+$ $2 X(1)>3)=\operatorname{Pr}(X(1) \geq 2)+\operatorname{Pr}(X(1)=1, X(2)-X(1)>1)+\operatorname{Pr}(X(1)=0, X(2)-$ $X(1)>3)=\left(1-\mathrm{e}^{-1}-\mathrm{e}^{-1}\right)+\mathrm{e}^{-1}\left(1-\mathrm{e}^{-1}-\mathrm{e}^{-1}\right)+\mathrm{e}^{-1}\left(1-\mathrm{e}^{-1}-\mathrm{e}^{-1}-\frac{1}{2} \mathrm{e}^{-1}-\frac{1}{6} \mathrm{e}^{-1}\right)$.

Task 5. As the autocorrelation function $R_{X X}(\tau)$ is symmetric we have $S_{X X}(-f)=$ $\int_{-\infty}^{\infty} R_{X X}(\tau) \mathrm{e}^{-j 2 \pi(-f) \tau} d \tau=\int_{-\infty}^{\infty} R_{X X}(\tau) \mathrm{e}^{-j 2 \pi f(-\tau)} d \tau=\int_{-\infty}^{\infty} R_{X X}(-\hat{\tau}) \mathrm{e}^{-j 2 \pi f \hat{\tau}} d \hat{\tau}=$ $\int_{-\infty}^{\infty} R_{X X}(\hat{\tau}) \mathrm{e}^{-j 2 \pi f \hat{\tau}} d \hat{\tau}=S_{X X}(f)$ and $\overline{S_{X X}(f)}=\overline{\int_{-\infty}^{\infty} R_{X X}(\tau) \mathrm{e}^{-j 2 \pi f \tau} d \tau}=\int_{-\infty}^{\infty}$ $R_{X X}(\tau) \mathrm{e}^{j 2 \pi f \tau} d \tau=[$ see above $]=S_{X X}(f)$.

Task 6. If we take $h(t)=\exp \left(-t / t_{0}\right) u(t) / t_{0}$ then we have $H(f)=F[h(t)]=1 /(1+$ $\left.j 2 \pi f t_{0}\right)$, so that $S_{Y Y}(f)=|H(f)|^{2} S_{N N}(f)=\left(N_{0} / 2\right) /\left(1+4 \pi^{2} f^{2} t_{0}^{2}\right)$ satisfies the imposed requirements when $t_{0}=1 /\left(2 \pi f_{0}\right)$.

