MVE135 Random Processes with Applications Written Exam Monday 19 August 2013 2 pm – 6 pm

TEACHER AND JOUR: Patrik Albin, telephone 070 6945709.

AIDS: Beta.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. GOOD LUCK!

Task 1. Find the conditional probability Pr(X < 3|X > 2) for a continuous random variable X with PDF $f_X(x) = c/(x^2 + 4)$. (Here c is a positive constant that is determined by the fact that $f_X(x)$ is a PDF.) (5 points)

Task 2. Let X and Y be zero-mean, unit variance Gaussian random variables with correlation coefficient ρ . Suppose we form two new random variables U and V using a linear transformation as

$$U = a X + b Y$$
 and $V = c X + d Y$,

where a, b, c and d are real (non-random) coefficients/constants. Find constraints on a, b, c and d such that U and V are independent. (5 points)

Task 3. Find the probability Pr(X(1) + X(2) + X(3) > 6) for a continuous time WSS Gaussian process X(t) with mean $\mu_X = 1$ and autocorrelation function $R_{XX}(\tau) = e^{-|\tau|} + 1$ for $\tau \in \mathbb{R}$. (5 points)

Task 4. Find the probability Pr(X(1) + X(2) > 3) for a Poisson process with rate 1. (5 points)

Task 5. The PSD $S_{XX}(f)$ of a continuous time WSS process X(t) has the properties to be real and symmetric (=even). Prove one of these properties. (5 points)

Task 6. Give an example of a continuous time impulse response function h that has the property that when a continuous time white noise process N(t) with PSD $S_{NN}(f) = N_0/2$ is input to an LTI system with this impulse response, then the output process Y(t) from the system has PSD $S_{YY}(f)$ that is decreasing for $f \ge 0$ and satisfies $S_{YY}(f_0) = S_{YY}(0)/2 = N_0/4$ for a certain frequency $f_0 > 0$. (In other words the LTI system is a lowpass filter with 3dB bandwith f_0 .) (5 points)

MVE135 Random Processes with Applications Solutions to Written Exam Monday 19 August 2013

Task 1. This is a part of Exercise 3.5 in the book by Miller and Childers. The solution is available at the URL

www.math.chalmers.se/Stat/Grundutb/CTH/mve135/1011/Exercises/HomeExercise2.pdf

Task 2. This is Exercise 5.29 in the book by Miller and Childers. The solution is available at the URL

www.math.chalmers.se/Stat/Grundutb/CTH/mve135/1011/Exercises/HomeExercise4.pdf

Task 3. As X(1)+X(2)+X(3) is $N(m, \sigma^2)$ -distributed we have $Pr(X(1)+X(2)+X(3) > 6) = Pr(N(m, \sigma^2) > 6) = 1 - \Phi((6-m)/\sigma)$, where m = E[X(1)+X(2)+X(3)] = 3 and $\sigma^2 = Var(X(1)+X(2)+X(3)) = 3 C_{XX}(0) + 4 C_{XX}(1) + 2 C_{XX}(2) = 3 + 4 e^{-1} + 2 e^{-2}$ [using that $C_{XX}(\tau) = R_{XX}(\tau) - \mu_X^2 = e^{-|\tau|}$].

Task 4. As X(1) + X(2) = (X(2) - X(1)) + 2X(1) where X(2) - X(1) and X(1) are independent Po(1)-distributed we have $Pr(X(1) + X(2) > 3) = Pr((X(2) - X(1)) + 2X(1) > 3) = Pr(X(1) \ge 2) + Pr(X(1) = 1, X(2) - X(1) > 1) + Pr(X(1) = 0, X(2) - X(1) > 3) = (1 - e^{-1} - e^{-1}) + e^{-1}(1 - e^{-1} - e^{-1}) + e^{-1}(1 - e^{-1} - e^{-1} - \frac{1}{2}e^{-1} - \frac{1}{6}e^{-1}).$

Task 5. As the autocorrelation function $R_{XX}(\tau)$ is symmetric we have $S_{XX}(-f) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j2\pi(-f)\tau} d\tau = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j2\pi f(-\tau)} d\tau = \int_{-\infty}^{\infty} R_{XX}(-\hat{\tau}) e^{-j2\pi f\hat{\tau}} d\hat{\tau} = \int_{-\infty}^{\infty} R_{XX}(\hat{\tau}) e^{-j2\pi f\hat{\tau}} d\hat{\tau} = S_{XX}(f)$ and $\overline{S_{XX}(f)} = \overline{\int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j2\pi f\tau} d\tau} = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{j2\pi f\tau} d\tau = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{j2\pi f\tau} d\tau$

Task 6. If we take $h(t) = \exp(-t/t_0) u(t)/t_0$ then we have $H(f) = F[h(t)] = 1/(1 + j2\pi ft_0)$, so that $S_{YY}(f) = |H(f)|^2 S_{NN}(f) = (N_0/2)/(1 + 4\pi^2 f^2 t_0^2)$ satisfies the imposed requirements when $t_0 = 1/(2\pi f_0)$.