MVE136 Random Signals Analysis

Written exam Monday 9 January 2012 8.30 am – 12.30 pm

TEACHER AND JOUR: Patrik Albin, telephone 0706945709.

AIDS: Beta <u>or</u> 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. GOOD LUCK!

Task 1. Calculate E(X|X>0) for a random variable $X \sim N(0,1)$. (5 points)

Task 2. Let X(t) be a continuous time WSS random process defined for all real times $t \in \mathbb{R}$. Is the time reversed process Y(t) = X(-t) also WSS? (The answer must be motivated!) (5 points)

Task 3. In order to find the expected value E(T) of the time $T = \min\{n \in \mathbb{N} : X_n = 2\}$ it takes the discrete time Markov chain X(n) with state space E, initial distribution $\pi(0)$ and transition probability matrix P given by

$$E = \{0, 1, 2\}, \quad \pi(0) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } P = \begin{bmatrix} 1/2 & 1/3 & 1/6 \\ 0 & 2/3 & 1/3 \\ 0 & 0 & 1 \end{bmatrix},$$

respectively, to reach the state 2, we notice that T+1 has the same distribution as the reccurence time $\hat{T}_2 = \min\{n \ge 1 : \hat{X}(n) = 2\}$ for the Markov chain $\hat{X}(n)$ with state space \hat{E} , initial distribution $\hat{\pi}(0)$ and transition probability matrix \hat{P} given by

$$\hat{E} = \{0, 1, 2\}, \quad \hat{\pi}(0) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \text{ and } \hat{P} = \begin{bmatrix} 1/2 & 1/3 & 1/6 \\ 0 & 2/3 & 1/3 \\ 1 & 0 & 0 \end{bmatrix}.$$

Writing $\hat{\pi} = [\hat{\pi}_0 \ \hat{\pi}_1 \ \hat{\pi}_2]$ for the stationary distribution of $\hat{X}(n)$, theory says (as well as do heuristics) that $\hat{\pi}_2 = 1/E(\hat{T}_2)$. Use this to calculate E(T). (5 points)

Task 4. For which ferquency $f_0 > 1$ does the lowpass WSS random process X(t) with PSD $S_{XX}(f) = 1$ for $|f| \le f_0$ and $S_{XX}(f) = 0$ otherwise have the same average normalized power $R_{XX}(0)$ as the average normalized power $R_{YY}(0)$ of the bandpass WSS random process Y(t) with PSD $S_{YY}(f) = 1$ for $|f - f_0| \le 1$, $S_{YY}(f) = 1$ for $|f + f_0| \le 1$ and $S_{YY}(f) = 0$ otherwise? (5 points)

Task 5. Let e[n] be discrete time Gaussian noise with zero mean and unit variance. Given a constant $a \in (-1, 1)$, how can the Fourier transform (/frequency analysis) techniques of Chapter 11 in the book be employed to establish that the discrete time random process $X[n] = \sum_{k=0}^{\infty} a^k e[n-k]$ has autocorrelation function $R_{XX}[n] = a^{|n|}/((1-a^2))$? (The required calculations need not be carried out in full detail - it is sufficient to just outline what should be done.) (5 points)

Task 6. Explain the ideas behind Blackman-Tukey's method either in the time domain or in the frequency domain. Also, what trade-off do you have to make when you set the width of the window (often denoted M) in the time domain? (5 points)

MVE136 Random Signals Analysis

Solutions to written exam Monday 9 January 2012

Task 1. We have $f_{X|X>0}(x) = f_X(x)/P(X>0) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}/(1/2) = \sqrt{2/\pi} e^{-x^2/2}$ for x > 0, so that $E(X|X>0) = \int_{-\infty}^{\infty} x f_{X|X>0}(x) dx = \int_{0}^{\infty} x \sqrt{2/\pi} e^{-x^2/2} dx = \sqrt{2/\pi}$.

Task 2. We have $\mu_Y(t) = E(Y(t)) = E(X(-t)) = \mu_X(-t) = \mu_X = \text{constant}$ and $R_{YY}(t, t+\tau) = E(Y(t)Y(t+\tau)) = E(X(-t)X(-(t+\tau))) = R_{XX}(-t, -(t+\tau)) = R_X(-(t+\tau)) = R_X(-(t+\tau))$

Task 3. We find $\hat{\pi}$ as the PMF on \hat{E} that solves the equation $\hat{\pi}\hat{P} = \hat{\pi}$. As this gives $\hat{\pi} = \begin{bmatrix} 2\\5 & \frac{2}{5} & \frac{1}{5} \end{bmatrix}$ it follows that $\mathbf{E}\{T\} = \mathbf{E}\{\hat{T}_2\} - 1 = 1/\hat{\pi}_2 - 1 = 5 - 1 = 4$.

Task 4. As $R_{XX}(0) = \int_{\infty}^{\infty} S_{XX}(f) df = 2 f_0$ and $R_{YY}(0) = \int_{\infty}^{\infty} S_{YY}(f) df = 4$ we must have $f_0 = 2$.

Task 5. See Example 11.3 in the book.

Task 6. In the time-domain BT's algorithm can be motivated as follows: Estimates of the autocorrelation function $\hat{r}_x[k] = \frac{1}{N} \sum_{n=k}^{N-1} x[n] x[n-k]$ are less reliable for large time lags k as such lags have smaller sample support. To reduce the variance we therefore give them a smaller weight when we compute the periodogram $\hat{P}_{\text{BT}}(e^{j\omega}) = \sum_{k=-M}^{M} w_{\text{lag}}[k] \hat{r}[k] e^{-jk\omega}$, where $w_{\text{lag}}[k]$ is the weighting window.

In the frequency domain BT's algorithm can be motivated as follows: As $X_N(e^{j\omega_1})$ and $X_N(e^{j\omega_2})$ are approximately uncorrelated when $|\omega_1 - \omega_2|/N$ is small, it is reasonable to assume that an averaging in the frequence domain $\hat{P}_{BT}(e^{j\omega}) = \frac{1}{2\pi} \hat{P}_{per}(e^{j\omega}) \star W_{lag}(e^{j\omega})$ can be used to reduce the variance. From this intuitive argumentation we also understand that the width of $W_{lag}(e^{j\omega})$ can be reduced if N is increased (larger N yields less correlation between adjacent frequencies).

A narrow window (small M) in the time domain gives a small variance at the cost of a larger bias. Naturally, a wide window instead gives larger variance but smaller bias. We call this a bias-variance trade-off. Of course, a narrow window in the time domain corresponds to a wide window in the frequency domain, in case you prefer to discuss the trade-off in the frequency domain instead.