Solutions to Chapter 10 and 11 Exercises

Problem 10.8

Let

$$
s(t)=\sum_{k=-\infty}^{\infty} s_{k} \exp \left(j 2 \pi f_{o} t\right)
$$

Then

$$
\begin{aligned}
& s(t-T)=\sum_{k=-\infty}^{\infty} s_{k} \exp \left(j 2 \pi f_{o}(t-T)\right) \\
& R_{X, X}(\tau)=E\left[\sum _ { k } \sum _ { m } s _ { k } s _ { m } ^ { * } \operatorname { e x p } \left(j 2 \pi k f_{o}(t-T) \exp \left(-j 2 \pi m f_{o}(t+\tau-T)\right]\right.\right. \\
&=\sum_{k} \sum_{m} s_{k} s_{m}^{*} \exp \left(j 2 \pi(k-m) f_{o} t\right) \exp \left(-j 2 \pi m f_{o} \tau\right) \\
& E\left[\exp \left(j 2 \pi(k-m) f_{o} T\right)\right] \\
&\left.E \exp \left(j 2 \pi(k-m) f_{o} T\right)\right]=\frac{1}{t_{o}} \int_{0}^{t_{o}} \exp \left(j 2 \pi(k-m) f_{o} u\right) d u \\
&=\left\{\begin{array}{cc}
0 & k \neq m \\
1 & k=m
\end{array}\right. \\
& R_{X, X}(\tau)=\sum_{k=-\infty}^{\infty}\left|s_{k}\right|^{2} \exp \left(-j 2 \pi k f_{o} \tau\right) \\
& S_{X, X}(f)=\sum_{k=-\infty}^{\infty}\left|s_{k}\right|^{2} \delta\left(f-k f_{o}\right)
\end{aligned}
$$

Hence the process $\mathrm{X}(\mathrm{t})=\mathrm{s}(\mathrm{t}-\mathrm{T})$ has a line spectrum and height of each line is given by the magnitude squared of the Fourier series coefficients.

Problem 10.12

$$
R_{X, X}\left(t_{1}, t_{2}\right)=E\left[\cos \left(\omega_{c} t_{1}+B\left[n_{1}\right] \pi / 2\right) \cos \left(\omega_{c} t_{2}+B\left[n_{2}\right] \pi / 2\right)\right],
$$

where n_{1} and n_{2} are integers such that $n_{1} T \leq t_{1}<\left(n_{1}+1\right) T$ and $n_{2} T \leq$ $t_{2}<\left(n_{2}+1\right) T /$. For t_{1}, t_{2} such that $n_{1} \neq n_{2}$,

$$
R_{X, X}\left(t_{1}, t_{2}\right)=E\left[\cos \left(\omega_{c} t_{1}+B\left[n_{1}\right] \pi / 2\right)\right] E\left[\cos \left(\omega_{c} t_{2}+B\left[n_{2}\right] \pi / 2\right)\right]=0
$$

while for t_{1}, t_{2} such that $n_{1}=n_{2}$,

$$
\begin{aligned}
R_{X, X}\left(t_{1}, t_{2}\right) & =\frac{1}{2} \cos \left(\omega_{c}\left(t_{2}-t_{1}\right)\right)+\frac{1}{2} E\left[\cos \left(\omega_{c}\left(t_{2}+t_{1}\right)+\pi B\left[n_{1}\right]\right)\right] \\
& =\frac{1}{2} \cos \left(\omega_{c}\left(t_{2}-t_{1}\right)\right)-\frac{1}{2} \cos \left(\omega_{c}\left(t_{2}+t_{1}\right)\right)
\end{aligned}
$$

Since this autocorrelation depends on more than just $t_{1}-t_{2}$, the process is not WSS.
(b) From part (a),
$R_{X, X}(t, t+\tau)= \begin{cases}0 & \text { if } t, t+\tau \text { are in different intervals, } \\ \frac{1}{2} \cos \left(\omega_{c} \tau\right)-\frac{1}{2} \cos \left(\omega_{c}(2 t+\tau)\right) & \text { if } t, t+\tau \text { are in in the same intervals. }\end{cases}$
Since the process is not WSS we must take time averages.
$R_{X, X}(\tau)=\left\langle R_{X, X}(t, t+\tau)\right\rangle=(1-p(\tau))\langle 0\rangle+p(\tau)\left\langle\frac{1}{2} \cos \left(\omega_{c} \tau\right)-\frac{1}{2} \cos \left(\omega_{c}(2 t+\tau)\right)\right\rangle$,
where $p(\tau)$ is the fraction of the values of t that lead to t and $t+\tau$ being in the same interval. This function is given by

$$
p(\tau)= \begin{cases}0 & |\tau|>T \\ 1-\frac{|\tau|}{T} & |\tau|<T\end{cases}
$$

Therefore,

$$
\begin{aligned}
p(\tau) & =\operatorname{tri}(t / T) \\
R_{X, X}(\tau) & =\frac{1}{2} \operatorname{tri}(\tau / T) \cos \left(\omega_{c} \tau\right) \\
S_{X, X}(f) & =\frac{1}{2} F T[\operatorname{tri}(\tau / T)] * F T\left[\cos \left(\omega_{c} \tau\right]\right.
\end{aligned}
$$

using Table E. 1 in Appendix E in the text,

$$
\begin{aligned}
S_{X, X}(f) & =\frac{1}{4} T \operatorname{sinc}^{2}(f T) *\left(\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right) \\
& \left.=\frac{T}{4}\left(\operatorname{sinc}^{2}\left(\left(f-f_{c}\right) T\right)\right)+\operatorname{sinc}^{2}\left(\left(f+f_{c}\right) T\right)\right)
\end{aligned}
$$

Problem 10.14

(a) The absolute BW is ∞ since $S(f)>0$ for all $|f|<\infty$.
(b) The 3 dB BW, f_{3} satisfies

$$
\begin{aligned}
\frac{1}{\left(1+\left(f_{3} / B\right)^{2}\right)^{3}} & =\frac{1}{2} \\
\Rightarrow f_{3} & =B \sqrt{2^{1 / 3}-1}=0.5098 B
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int_{-\infty}^{\infty} f^{2} S(f) d f & =\int_{-\infty}^{\infty} \frac{f^{2}}{\left(1+(f / B)^{2}\right)^{3}} d f=B^{3} \int_{-\infty}^{\infty} \frac{z^{2}}{\left(1+z^{2}\right)^{3}} d z=\frac{\pi}{8} B^{3} \\
\int_{-\infty}^{\infty} S(f) d f & =\int_{-\infty}^{\infty} \frac{1}{\left(1+(f / B)^{2}\right)^{3}} d f=B \int_{-\infty}^{\infty} \frac{1}{\left(1+z^{2}\right)^{3}} d z=\frac{3 \pi}{8} B \\
B_{r m s}^{2} & =\frac{\frac{\pi}{8} B^{3}}{\frac{3 \pi}{8} B}=\frac{B^{2}}{3} \\
B_{r m s} & =\frac{B}{\sqrt{3}} .
\end{aligned}
$$

(a)

$$
\begin{aligned}
E\left[\epsilon^{2}\right] & =E\left[\left(Y[n+1]-a_{1} Y[n]-a_{2} Y[n-1]\right)^{2}\right] \\
& =R_{Y, Y}[0]\left(1+a_{1}^{2}+a_{2}^{2}\right)-2 a_{1}\left(1-a_{2}\right) R_{Y, Y}[1]-2 a_{2} R_{Y, Y}[2]
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{\partial E\left[\epsilon^{2}\right]}{\partial a_{1}} & =2 a_{1} R_{Y, Y}[0]-2\left(1-a_{2}\right) R_{Y, Y}[1]=0 \\
& \Rightarrow R_{Y, Y}[0] a_{1}+R_{Y, Y}[1] a_{2}=R_{Y, Y}[1] \\
\frac{\partial E\left[\epsilon^{2}\right]}{\partial a_{2}} & =2 a_{2} R_{Y, Y}[0]-2 R_{Y, Y}[2]+2 a_{1} R_{Y, Y}[1]=0 \\
& \Rightarrow R_{Y, Y}[1] a_{1}+R_{Y, Y}[0] a_{2}=R_{Y, Y}[2] \\
& \Rightarrow\left[\begin{array}{cc}
R_{Y, Y}[0] R_{Y, Y}[1] \\
R_{Y, Y}[1] & R_{Y, Y}[0]
\end{array}\right]\left[\begin{array}{c}
\left.a_{1}\right] \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
R_{Y Y Y}[1] \\
R_{Y, Y}[2]
\end{array}\right] \\
\Rightarrow\left[\begin{array}{c}
\left.a_{1}\right] \\
a_{2}
\end{array}\right] & =\frac{1}{R_{Y, Y}^{2}[0]-R_{Y, Y}^{2}[1]}\left[\begin{array}{c}
R_{Y, Y}[0] R_{Y, Y}[1]-R_{Y, Y}[1] R_{Y, Y}[2] \\
R_{Y, Y}[0] R_{Y, Y}[2]-R_{Y, Y}^{2}[1]
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
Y(t)= & a\left(S^{2}(t)+N^{2}(t)+2 S(t) N(t)\right) \\
E[Y(t)]= & a E\left[S^{2}(t)\right]+a E\left[N^{2}(t)\right]+2 a E[S(t) N(t)] \\
= & a\left(\sigma_{S}^{2}+\sigma_{N}^{2}\right) \\
R_{Y, Y}(\tau)= & a^{2} E\left[\left(S^{2}(t)+N^{2}(t)+2 S(t) N(t)\right)\right. \\
& \left.\left(S^{2}(t+\tau)+N^{2}(t+\tau)+2 S(t+\tau) N(t+\tau)\right)\right] \\
= & a^{2} E\left[S^{2}(t) S^{2}(t+\tau)\right]+a^{2} E\left[N^{2}(t) N^{2}(t+\tau)\right] \\
+ & 4 a^{2} E[S(t) S(t+\tau) N(t) N(t+\tau)]+a^{2} E\left[S^{2}(t) N^{2}(t+\tau)\right] \\
+ & 2 a^{2} E\left[S^{2}(t) S(t+\tau) N(t+\tau)\right]+a^{2} E\left[N^{2}(t) S^{2}(t+\tau)\right] \\
+ & 2 a^{2} E\left[N^{2}(t) N(t+\tau) S(t+\tau)\right]+2 a^{2} E\left[S(t) S^{2}(t+\tau) N(t)\right] \\
+ & 2 a^{2} E\left[S(t) N(t) N^{2}(t+\tau)\right] \\
= & a^{2}\left[R_{S, S}^{2}(0)+2 R_{S, S}^{2}(\tau)+R_{N, N}^{2}(0)+2 R_{N, N}^{2}(\tau)\right. \\
+ & \left.4 R_{S, S}(\tau) R_{N, N}(\tau)+R_{S, S}(0) R_{N, N}(0)+R_{N, N}(0) R_{S, S}(0)\right] \\
= & a^{2}\left[\left(R_{S, S}(0)+R_{N, N}(0)\right)^{2}+2\left(R_{S, S}(\tau)+R_{N, N}(\tau)\right)^{2}\right] \\
= & a^{2}\left[\left(\sigma_{S}^{2}+\sigma_{N}^{2}\right)^{2}+2\left(R_{S, S}(\tau)+R_{N, N}(\tau)\right)^{2}\right] .
\end{aligned}
$$

In above Calculation we used the following information:
For two Gaussian random process $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$:

$$
\begin{array}{ll}
E\left[X^{2}(t) Y^{2}(t+\tau)\right]=R_{X X}[0] R_{Y Y}[0]+2 R_{X Y}^{2}[\tau] & \text { If } \mathrm{X} \text { and } \mathrm{Y} \text { are correlated } \\
E[X(t) Y(t) Y(t+\tau)]=E[X(t)] E[Y(t) Y(t+\tau)] & \text { If } X \text { and } Y \text { are not correlated }
\end{array}
$$

Problem 11.11

For the given PSD's,

$$
\begin{aligned}
R_{S, S}(\tau) & =F^{-1}\left[S_{S, S}(f)\right]=\frac{A^{2}}{4}\left(e^{-j 2 \pi f_{c} \tau}+e^{j 2 \pi f_{c} \tau}\right)=\frac{A^{2}}{2} \cos \left(2 \pi f_{c} \tau\right) \\
R_{N, N}(\tau) & =F^{-1}\left[S_{N, N}(f)\right]=\frac{N_{o} B}{2} \operatorname{sinc}(B \tau)\left(e^{-j 2 \pi f_{c} \tau}+e^{j 2 \pi f_{c} \tau}\right) \\
& =N_{o} B \operatorname{sinc}(B \tau) \cos \left(2 \pi f_{c} \tau\right)
\end{aligned}
$$

From these we determine that

$$
\begin{aligned}
\sigma_{S}^{2} & =R_{S, S}(0)=\frac{A^{2}}{2} \\
\sigma_{N}^{2} & =R_{N, N}(0)=N_{o} B
\end{aligned}
$$

The autocorrelation of $Y(t)$ is then

$$
\begin{aligned}
R_{Y, Y}(\tau) & =a^{2}\left[\left(\sigma_{S}^{2}+\sigma_{N}^{2}\right)^{2}+2\left(R_{S, S}(\tau)+R_{N, N}(\tau)\right)^{2}\right] \\
& =a^{2}\left[\left(\frac{A^{2}}{2}+N_{o} B\right)^{2}+2\left(\frac{A^{2}}{2}+N_{o} B \operatorname{sinc}(B \tau)\right)^{2} \cos ^{2}\left(2 \pi f_{c} \tau\right)\right] \\
& =a^{2}\left[\left(\frac{A^{2}}{2}+N_{o} B\right)^{2}\right. \\
& \left.+2\left(\frac{A^{2}}{4}+A^{2} N_{o} B \operatorname{sinc}(B \tau)+\left(N_{o} B\right)^{2} \operatorname{sinc}^{2}(B \tau)\right)\left(1+\cos \left(4 \pi f_{c} \tau\right)\right)\right]
\end{aligned}
$$

Taking FT's, the PSD of $Y(t)$ is then

$$
\begin{aligned}
S_{Y, Y}(f)= & a^{2}\left[\left(\frac{A^{2}}{2}+N_{o} B\right)^{2} \delta(f)+2\left(\frac{A^{2}}{4} \delta(f)+A^{2} N_{o} \operatorname{rect}(f / B)+N_{o}^{2} B \operatorname{tri}(f / B)\right)\right. \\
& \left.*\left(\delta(f)+\frac{1}{2} \delta\left(f-2 f_{c}\right)+\frac{1}{2} \delta\left(f+2 f_{c}\right)\right)\right] \\
= & a^{2}\left(\frac{A^{2}}{2}+A^{2} N_{o} B+\left(N_{o} B\right)^{2}\right) \delta(f)+A^{2} N_{o} \operatorname{rect}(f / B)+N_{o}^{2} B \operatorname{tri}(f / B) \\
+ & \frac{A^{2}}{4}\left(\delta\left(f-2 f_{c}\right)+\delta\left(f+2 f_{c}\right)\right)+A^{2} N_{o}\left(\operatorname{rect}\left(\frac{f-2 f_{c}}{B}\right)+\operatorname{rect}\left(\frac{f+2 f_{c}}{B}\right)\right) \\
+ & N_{o}^{2} B\left(\operatorname{tri}\left(\frac{f-2 f_{c}}{B}\right)+\operatorname{tri}\left(\frac{f+2 f_{c}}{B}\right)\right) .
\end{aligned}
$$

Problem 11.14

$$
S_{Y, Y}(f)=S_{X, X}(f)|H(f)|^{2}=\frac{a}{1+\left(f / f_{o}\right)^{2}} \cdot b^{2}\left[\operatorname{rect}\left(\frac{f-f_{c}}{f_{2}-f_{1}}\right)+\operatorname{rect}\left(\frac{f+f_{c}}{f_{2}-f_{1}}\right)\right],
$$

where $f_{c}=\left(f_{1}+f_{2}\right) / 2$. Assuming $f_{2}-f_{1} \ll f_{o}$, the input PSD will be approximately constant over the passband of the filter. In that case, the output PSD will be well approximated by

$$
\begin{aligned}
S_{Y, Y}(f) & \approx S_{X, X}\left(f_{c}\right)|H(f)|^{2}=\frac{a b^{2}}{1+\left(f_{c} / f_{o}\right)^{2}} \cdot\left[\operatorname{rect}\left(\frac{f-f_{c}}{f_{2}-f_{1}}\right)+\operatorname{rect}\left(\frac{f+f_{c}}{f_{2}-f_{1}}\right)\right] \\
\Rightarrow & =\frac{2 a b^{2}\left(f_{2}-f_{1}\right)}{1+\left(f_{c} / f_{o}\right)^{2}} \operatorname{sinc}\left(\left(f_{2}-f_{1}\right) \tau\right) \cos \left(\omega_{c} \tau\right)
\end{aligned}
$$

Problem 11.26

$h(t)=s\left(t_{0}-t\right)$. In this case, $s\left(t_{0}-t\right)=s(t)$ so the impulse response of the matched filter is the same as the signal itself.

