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1 Introduction

The purpose of this laboratory exercise is to illustrate some important concepts related to random pro-
cesses. You will mostly use Matlab to compute and plot various quantities, and then contemplate on
the result. To get a pass, you need to hand in a report with your results, and a carefully selected set of
plots (there will be several!). The deadline for handing in the report is October 4th. You should work
in groups of 2 students and send in the report as a pdf-file to maryam.fatemi@chalmers.se. Remember
to explain/motivate the results that you observe and please do not forget to label the axes in all your
figures!
The laboratory is mainly about random variables, conditional dependencies, ergodicity, auto-correlation
and scatter plots. Having completed this laboratory you should be able to

• describe how the conditional distribution behaves if you know the correlation between two variables
(at least if they are jointly Gaussian).

• visualize the typical realizations (say in a scatter plot) for pairs of variables for different correlations.

• estimate the auto-correlation function from data (at least in simple examples).

Random processes are frequently encountered in virtually all engineering applications. This is especially
true when we are dealing with real data, collected by imperfect sensors and/or transmitted of random
media. The key to a successful solution is then to understand random signals, or rather models of such
processes. In this project we consider some basic concepts used to characterize random processes. Perhaps
the most important is the nature of a random process itself. A short introduction is given in Section 4.
More details regarding the background theory are given in Chapters 5 and 8 of [1] or [2].
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2 Pairs of Uncorrelated Random Variables

The goal of this exercise is to increase the understanding of what the joint distribution of two random
variables means. In the first case, you will study uncorrelated variables, using the Gaussian and Uniform
distributions respectively.

Task 2.1: Histogram Use Matlab to generate N = 2000 random variables xk from the N(0,1) (randn)
and uk U(0,1) (rand) distributions1 respectively, where k indicates ”realization number k”. Plot
the histograms using the hist command. Note that you can control the number of ”bins” in the
histogram with a second argument.

Task 2.2: Joint Distribution Generate two vectors x and y of N = 2000 independent N(0,1) random
variables. Illustrate the joint distribution by plotting y versus x using plot(x,y,’.’) (this is
called a scatterplot). What is the shape of the “equiprobability” lines (i.e. level curves in the joint
distribution)? Next, continue with two vectors u and v from the U(-a,a) distribution, where a is
selected to give variance one (a =

√
3). What is the shape of the scatterplot, and what can you say

about the level curves now? Finally, generate a scatterplot of x versus u (Gaussian versus uniform)
and explain the shape.

Task 2.3: Conditional Distribution An important situation in applications is that we know the out-
come of one variable (e.g. from a measurement), and we are asked to make an estimate of an
unobservable quantity. A crucial concept for this situation is the conditional distribution. The
distribution of x when we know the value of y is denoted p(x|y). It is a slice of the joint distribu-
tion p(x, y), along the x-direction at some fixed y = ŷ, and then normalized to integrate to one:
p(x|y) = p(x, y)/p(y). Generate samples from this distribution by choosing a fixed value ŷ = 0.5
and a ”tolerance” δy = 0.1. Go through the ordered pairs (xk, yk) (where (·)k indicates the kth
realization), and select those xks where ŷ − ∆y < yk < ŷ + ∆y (note that ∆y > 0 is needed since
we are dealing with a continuous-valued distribution). Plot the histogram of the so selected sam-
ples, i.e., from p(x|y = ŷ). Is it different from the marginal distribution p(x)? Why? Repeat the
experiment with the pair (xk, uk), fixing uk = 0.5. Explain the result.

3 Pairs of Correlated Random Variables

Task 3.1: Joint Distribution and Correlation In this task you will investigate how correlation (or,
more generally, dependency) changes the joint distribution.

Start with the uncorrelated N(0,1) variables x and y from Task 2.1. Now, generate a new variable
z according to2:

z = αx +
√

1 − α2 y , −1 ≤ α ≤ 1 .

Show (theoretically) that z is also N(0,1) and that the correlation between x and z is given by
rxz = E[xz] = α. You shall now illustrate the meaning of the correlation by generating scatterplots
for different values α ∈ {0.5,−0.5, 0.9,−0.9}. Verify, for at least one of the cases, that z is also
N(0,1), by plotting the histogram. After seeing the scatterplots, suggest a simple way to interpret
correlation between two random variables!

Task 3.2: Conditional Distribution In Task 2.3, the conditional distribution is the same as the
marginal, since the variables are uncorrelated. We will now investigate how correlation changes
the picture. First, generate z as above, with α = 0.7. Then generate samples from the distribution
p(x|z = 0.5) using the same procedure as in Task 2.3. Plot the histogram. Repeat for p(x|z = −0.5).
Then generate a new z with α = −0.7 and plot the histogram for p(x|z = 0.5). Summarize your
observations, and explain how correlation means that one variable holds information about the
other.

1Generally, the typewriter font is used for Matlab commands in this document.
2Note that the actual way the variable is generated is unimportant. Only its statistical properties matter. This is very

fortunate for engineers, since the exact underlying physics/chemistry/biology etc. of a complicated engineering system is
usually beyond comprehension. But most of the time we can get (sufficiently) good statistical models!
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4 Random Processes: White Noise

A random process in discrete time is a sequence of random variables. Thus, a process {x[n]} has actually
two dimensions: the time variable n takes values from ...,−1, 0, 1, ..., whereas the realization is chosen
from the continuous “event space”, according to the specified distribution. One of the simplest ran-
dom processes is the white Gaussian noise (WGN) process, which is a sequence of uncorrelated random
variables with a Gaussian distribution.
To illustrate the two-dimensional nature of a stochastic process, we can think of an N × K matrix X

X =







x1[1] . . . xK [1]
...

...
x1[N ] . . . xK [N ]






. (1)

Thus, the nth row of X contains K different realizations of a sample x[n], whereas column k is one
realization of the whole sequence {x[1], . . . , x[N ]}, indexed by the ”realization number” k. We can
therefore form the Ensemble Average µx[n] of a sample x[n] as

µx[n] = lim
K→∞

1

K

K
∑

k=1

xk[n],

and the Time Average for the kth realization is given by

x̄k = lim
N→∞

1

N

N
∑

n=1

xk[n] .

Note that we are using samples from the event space rather than treating it as continuous, mimicking
the process of generating many observations of the same quantity. In most cases, the distribution is
continuous, and the theoretical ensemble average is computed by an integral rather than a sum. We
make no difference between these cases in the present exposition.
An important concept for stochastic processes is ergodicity, which means that ensemble and time averaging
gives the same result. For this to be possible we must clearly have µx[n] = µx, independently of n, and
x̄k = x̄, independently of k. Thus, ergodicity is related to (wide-sense) stationarity. More details are
given in Section 8.3 of [1] or [2].

Task 4.1: Ensemble and Time Averages Generate a matrix X as in (1), with K = 256 realizations
of the stochastic process x[n], n = 1, . . . , N . Use N = 256 and let each xk[n] be N(0,1) WGN. In
Matlab, this is conveniently done as X=randn(N,K). Plot the ensemble average µ̂x[n] as a function
of n by averaging along the rows in X. Use mean(X’);. Next, plot the time average as a function
of realization (mean(X);). Does this process appear to be ergodic in the mean? Note that the
averages are different from the theoretical values due to the finiteness of N and K.

Task 4.2: Joint Distribution and Correlation Illustrate the joint distribution of x[n1] and x[n2] by
scatterplots, for a few values of n1 and n2. Do they look uncorrelated? Verify by computing the
sample ensemble correlation

r̂x(n1, n2) =
1

K

K
∑

k=1

xk[n1]xk[n2]

(we call it ”sample” because K is finite – the true ensemble average rx(n1, n2) = E[x(n1)x(n2)]
would be obtained for K → ∞).

5 Random Walk Process

In this part you shall study the simple random walk process, introduced in Example 8.5 of [1] or [2]. The
process x[n] is recursively generated as

x[n] = x[n − 1] + w[n] , (2)
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where w[n] is N(0,1) WGN. The filtering introduces a correlation between successive samples of x[n].
The first task is to theoretically characterize this correlation. Then you shall generate scatterplots to
illustrate the theoretical results.

Task 5.1 (Theoretical): Mean Value Verify that µx[n] = 0 for all n.

Task 5.2 (Theoretical): Variance Assume that the process is started with x[0] = 0, so that x[1] =
w[1] and E[x2[1]] = σ2

w
= 1. Derive a formula for recursively computing Px[n] = E[x2[n]] in terms

of Px[n− 1]. Exploit the fact that x[n− l] is uncorrelated to w[n] for any l ≥ 1. Solve the resulting
difference equation and give an explicit expression for Px[n]. What happens as n → ∞?

Task 5.3 (Theoretical): Auto-Correlation Compute the auto-correlation rx(n, n−1) by multiplying
(2) with x[n − 1] and take expectation. Continue with rx(n, n − 2) and generalize to rx(n, n − l)
for any l > 0. Is the process wide-sense stationary (rx(n, n− l) independent of n)? Finally, give an
explicit expression for the Normalized Correlation Coefficient

ρx(n, n − l) =
rx(n, n − l)

√

Px(n)Px(n − l)

What happens as n → ∞ (for fixed l)?

Task 5.4: Joint Distribution Generate a 256 × 256 matrix X similar to (1), where each column is
generated as in (2). This can conveniently be done using the command x=filter(1,[1 -1],w);

for each column. Plot all realizations in the same figure using plot(X). Explain what you see! Is
it consistent with your theoretical calculations? Next, generate scatterplots for pairs (x[n1], x[n2])
with (n1, n2) ∈ {(10, 9), (50, 49), (100, 99), (200, 199)} and (n1, n2) ∈ {(50, 40), (100, 90), (200, 190)}.
Comment on the plots in light of the theoretical computations!

Task 5.5: Sample Auto-Correlation Compute the sample ensemble auto-correlation r̂x(n, n − 1) as
a function of n (n = 2 : 256). This is done by averaging the product x[n]x[n − 1] along the rows in
the matrix X. Plot r̂x(n, n − 1) versus n, together with the theoretical values rx(n, n − 1) in the
same plot. Note the agreement with the theoretical values. In this experiment you used K = 256
realizations of the same process to compute the ensemble auto-correlation. Would it be possible to
estimate the auto-correlation rx(n, n − 1) from one realization only, for this process?

6 Damped Random Walk

As a final example you shall study a stationary random process. This time, let x[n] be generated as

x[n] = 0.9x[n − 1] + w[n] , (3)

where w[n] is N(0,1) WGN. Similar to the random walk, this is a first-order auto-regressive (AR) process.
You shall repeat the above calculations for this model, which looks similar at first sight, but which has
quite different behavior!

Task 6.1 (Theoretical): Variance Assume again that the process is started with x[0] = 0 so that
x[1] = w[1] and E[x2[1]] = σ2

w
= 1. Derive the recursion formula for Px[n] and give an explicit

expression for Px[n]. What is the limiting variance as n → ∞?

Task 6.2 (Theoretical): Auto-Correlation Compute the auto-correlation function rx(n, n − l) =
E[x[n]x[n − l]]. Is this process wide-sense stationary? What if n → ∞?

Task 6.3: Joint Distribution Generate a 256 × 256 matrix X similar to (1), where each column
is generated as in (3) (Matlab: x=filter(1,[1 -0.9],w);). Plot all realizations in the same
plot using plot(X) and comment on the results. Generate scatterplots for pairs (x[n1], x[n2])
with (n1, n2) ∈ {(10, 9), (50, 49), (100, 99), (200, 199)} and (n1, n2) ∈ {(50, 40), (100, 90), (200, 190)}.
Comment on the plots in light of the theoretical computations. Compare with Task 5.4.
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Task 6.4: Sample Auto-Correlation Compute the sample ensemble auto-correlation r̂x(n, n−1) ver-
sus n, as in Task 5.5, and plot r̂x(n, n − 1) and the theoretical value rx(n, n − 1) versus n in the
same figure. Is there any significant difference from Task 5.5? Since this process is stationary (for
large n), we expect the same result also from a time average. Thus, the auto-correlation can be
estimated from a single realization as

r̂x(l) =
1

N

N
∑

n=l

x[n]x[n − l]

Test this approach on one or two realizations, at least for l = 1, and compare to the theoretical
auto-correlation and to the result obtained using ensemble averaging. Keep in mind that both K
and N are finite, so you should not expect a perfect agreement.
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