MVE136 Random Signals Analysis Fall 2011 Written exam Thursday 20 October $20112.00-6.00$ pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Beta or 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
GRADES: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Good Luck!
Task 1. Let (X, Y) be a continuous random variable with PDF $f_{X, Y}(x, y)=\mathrm{e}^{-x-y-x y}$ $/\left(\int_{0}^{\infty}(1+z)^{-1} \mathrm{e}^{-z} d z\right)$ for $x, y \geq 0$ (and 0 otherwise). Find $\mathbf{E}\{X \mid Y=y\}$. (5 points)

Task 2. Give an example of a WSS random process that is not strict sense stationary. (5 points)

Task 3. Find $\mathbf{E}\left\{X_{k}\right\}$ for $k \geq 0$ for a Markov chain $\left\{X_{k}\right\}_{k=0}^{\infty}$ with states $\{0,1,2\}$ and transition probability matrix

$$
P=\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
0 & 2 / 3 & 1 / 3 \\
1 / 4 & 0 & 3 / 4
\end{array}\right)
$$

when the initial distribution $\pi(0)$ is equal to the stationary distribution π. (5 points)
Task 4. As you know, the Fourier transform $(\mathcal{F} g)(f)$ and inverse Fourier transform $\left(\mathcal{F}^{-1} g\right)(t)$ of a function $g: \mathbb{R} \rightarrow \mathbb{R}$ are given by

$$
(\mathcal{F} g)(f)=\int_{-\infty}^{\infty} \mathrm{e}^{-j 2 \pi f t} g(t) d t \quad \text { and } \quad\left(\mathcal{F}^{-1} g\right)(t)=\int_{-\infty}^{\infty} \mathrm{e}^{j 2 \pi f t} g(f) d f
$$

respectively, and satisfy $\left(\mathcal{F}^{-1} \mathcal{F} g\right)(t)=g(t)$. Prove that $(\mathcal{F} \mathcal{F} g)(t)=g(-t)$. (5 points)
Task 5. Show that the output $\{Y(n)\}_{n=-\infty}^{\infty}$ of a discrete time LTI system with impulse response $h(n)=2\left(-\frac{1}{2}\right)^{n}-\left(-\frac{1}{4}\right)^{n}$ for $n \geq 0$ (and 0 otherwise) is white noise when the input $\{X(n)\}_{n=-\infty}^{\infty}$ is given by $X(n)=e(n)+\frac{3}{4} e(n-1)+\frac{1}{8} e(n-2)$, where $\{e(n)\}_{n=-\infty}^{\infty}$ is white noise with $\mathbf{E}\left\{e(n)^{2}\right\}=1$. (5 points)

Task 6. We have collected four measurements

$$
x[0]=0.3, \quad x[1]=-0.2, \quad x[2]=0.1 \quad \text { and } \quad x[3]=-0.3,
$$

of a discrete time WSS random process $\{x[n]\}_{n=-\infty}^{\infty}$ and we wish to find a mathematical model for the measured process. We select to use a simple AR(1)-model $x[n]+a_{1} x[n-$ $1]=e[n]$ for $n \in \mathbb{Z}$, where $\{e[n]\}_{n=-\infty}^{\infty}$ is discrete time white noise: Your task is to estimate the parameter a_{1} and the white noise variance $\sigma_{e}^{2}=\mathbf{E}\left\{e[n]^{2}\right\}$.

MVE136 Random Signals Analysis Fall 2011

Solutions to written exam Thursday 20 October 2011

Task 1. As $f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{0}^{\infty} \mathrm{e}^{-x-y-x y} d x /\left(\int_{0}^{\infty}(1+z)^{-1} \mathrm{e}^{-z} d z\right)=$ $(1+y)^{-1} \mathrm{e}^{-y} /\left(\int_{0}^{\infty}(1+z)^{-1} \mathrm{e}^{-z} d z\right)$ for $y \geq 0$ (and 0 otherwise) we have $f_{X \mid Y}(x \mid y)=$ $f_{X, Y}(x, y) / f_{Y}(y)=(1+y) \mathrm{e}^{-x-x y}$ for $x, y \geq 0$ (and 0 otherwise), so that $\mathbf{E}\{X \mid Y=y\}$ $=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x=\int_{0}^{\infty} x(1+y) \mathrm{e}^{-x(1+y)} d x=\ldots=(1+y)^{-1}$ for $y \geq 0$.

Task 2. For example, the process $\{X(t)\}_{t \in \mathbb{Z}}$ made up of independent random variables that are $\mathrm{N}(0,1)$-distributed for t even and that have a discrete Rademacher distribution with PMF $P_{X(t)}(-1)=P_{X(t)}(1)=1 / 2$ for t odd, as this process is zero-mean with autocorrelation function $R_{X X}(\tau)=\delta(\tau)$, but clearly is not strict sense stationary.

Task 3. The stationary distribution $\pi=\left(\pi_{0} \pi_{1} \pi_{2}\right)$ solves the system of equations $\pi=\pi P$ with $\sum_{n=0}^{2} \pi_{n}=1$, which readily gives $\pi=(2 / 91 / 34 / 9)$. As $\pi(0)=\pi$ we have $\pi(k)=\pi$ for all $k \geq 0$, so that (with obvious notation) $\mathbf{E}\left\{X_{k}\right\}=\mathbf{E}\{\pi\}=$ $0 \cdot 2 / 9+1 \cdot 1 / 3+2 \cdot 4 / 9=11 / 9$ for $k \geq 0$.

Task 4. As $(\mathcal{F} g)(f)=\left(\mathcal{F}^{-1} g\right)(-f)$ we have $(\mathcal{F F} g)(t)=\left(\mathcal{F}^{-1} \mathcal{F} g\right)(-t)=g(-t)$.
Task 5. We can view $X(n)$ as the output from an LTI system with input $e(n)$ and impulse response g given by $g(0)=1, g(1)=\frac{3}{4}, g(2)=\frac{1}{8}$ and $g(n)=0$ otherwise. As $S_{e e}(f)=1$ this gives $S_{X X}(f)=S_{e e}(f)|G(f)|^{2}=\left|1+\frac{3}{4} \mathrm{e}^{-j 2 \pi f}+\frac{1}{8} \mathrm{e}^{-j 4 \pi f}\right|^{2}$. Further, we have $S_{Y Y}(f)=S_{X X}(f)|H(f)|^{2}$, where $H(f)=\sum_{n=-\infty}^{\infty} h(n) \mathrm{e}^{-j 2 \pi n f}=$ $2 \sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} \mathrm{e}^{-j 2 \pi n f}-\sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n} \mathrm{e}^{-j 2 \pi n f}=2 /\left(1+\frac{1}{2} \mathrm{e}^{-j 2 \pi f}\right)-1 /\left(1+\frac{1}{4} \mathrm{e}^{-j 2 \pi f}\right)=$ $1 /\left(\left(1+\frac{1}{2} \mathrm{e}^{-j 2 \pi f}\right)\left(1+\frac{1}{4} \mathrm{e}^{-j 2 \pi f}\right)\right)=1 /\left(1+\frac{3}{4} \mathrm{e}^{-j 2 \pi f}+\frac{1}{8} \mathrm{e}^{-j 4 \pi f}\right)=1 / G(f)$.

Task 6. As the autocorrelation function $r_{x}[k]$ of the $\operatorname{AR}(1)$-process satisfies the YuleWalker equations

$$
a_{1} r_{x}[0]+r_{x}[1]=0 \quad \text { and } \quad r_{x}[0]+a_{1} r_{x}[1]=\sigma_{e}^{2},
$$

we obtain estimates \hat{a}_{1} and $\hat{\sigma}_{e}^{2}$ of the parameters a_{1} and σ_{e}^{2} by solving the equations

$$
\hat{a}_{1} \hat{r}_{x}[0]+\hat{r}_{x}[1]=0 \quad \text { and } \quad \hat{r}_{x}[0]+\hat{a}_{1} \hat{r}_{x}[1]=\hat{\sigma}_{e}^{2},
$$

where

$$
\hat{r}_{x}[0]=\frac{1}{4} \sum_{n=0}^{3} x[n]^{2}=\ldots=0.0575 \quad \text { and } \quad \hat{r}_{x}[1]=\frac{1}{4} \sum_{n=0}^{2} x[n] x[n+1]=\ldots=-0.0275
$$

are estimated values of the autocorrelation function. This gives $\hat{a}_{1}=0.0275 / 0.0575$ and $\hat{\sigma}_{e}^{2}=0.0575-0.0275^{2} / 0.0575$.

