MVE136 Random Signals Analysis Fall 2012 Written exam Thursday 25 October 2012 2.00 – 6.00 pm

TEACHER AND JOUR: Patrik Albin, telephone 0706945709.

AIDS: Beta <u>or</u> 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. GOOD LUCK!

Task 1. Find the conditional expectation $E(X|Y = \ell)$ for a pair of discrete random variables X and Y with PMF $P_{X,Y}(k,\ell) = (k!\ell!e^2)^{-1}$ for $k,\ell \in \{0,1,2,\ldots\}$. (5 points)

Task 2. Find the probability Pr(X(1)+X(2)+X(3) > 6) for a continuous time WSS Gaussian process X(t) with mean $\mu_X = 1$ and autocorrelation function $R_{XX}(\tau) = e^{-|\tau|} + 1$ for $\tau \in \mathbb{R}$. (5 points)

Task 3. Consider a Markov chain $X[k] \in \{0,1\}$ with initial distribution $\pi(0)$ and transition matrix P given by

$$\pi(0) = (1/2, 1/2) = [1/2 \ 1/2]$$
 and $P = \begin{bmatrix} 0 & 1 \\ 2/3 & 1/3 \end{bmatrix}$,

respectively. [The two different representations of $\pi(0)$ are in vector form (first) and row matrix form (secondly): It is a matter of taste which one one prefers – both are correct.] Find the expected value E[X[2]] of X[2]. (5 points)

Task 4. Calculate the autocorrelation estimate $\hat{R}_{XX}^{(\text{tri})}(\tau) = \frac{1}{2t_0} \int_{-t_0+|\tau|/2}^{t_0-|\tau|/2} X(t-\frac{\tau}{2}) X(t+\frac{\tau}{2}) dt$ for $\tau \in (-2t_0, 2t_0)$ if the observed signal X(t) over the interval $(-t_0, t_0)$ is given by $\cos(t)$ for $t \in (-t_0, t_0)$. [Hint: The trigonometric formula $\cos(x+y) + \cos(x-y) = 2\cos(x)\cos(y)$ might become useful.] Say something about how the corresponding PSD estimate $\hat{S}_{XX}^{(\text{tri})}(f)$ is calculated (but you need not do all details of the calculation). (5 points)

Task 5. Let continuous time white noise N(t) [a zero-mean WSS process with PSD $S_{NN}(f) = N_0/2$ for $f \in \mathbb{R}$] be input to an LTI system with impulse response $h(t) = 2/(1+(2\pi t)^2)$ for $t \in \mathbb{R}$. Find the average power $E[Y(t)^2]$ of the output Y(t) from the LTI system. (5 points)

Task 6. Compute the autocorrelation function $r_x[n]$ for n = 0 and n = 1 when x[n] is an AR(1)-process with parameter $a_1 = 0.7$. You can assume that the input noise has variance $\sigma_e^2 = 1$. (5 points)

MVE136 Random Signals Analysis Fall 2012

Solutions to written exam Thursday 25 October 2012

Task 1. As $P_Y(\ell) = \sum_{k=0}^{\infty} P_{X,Y}(k,\ell) = (\ell! e^1)^{-1}$ we get $P_{X|Y}(k|\ell) = P_{X,Y}(k,\ell)/P_Y(\ell)$ = $(k! e^1)^{-1}$ so that $E(X|Y=\ell) = \sum_{k=0}^{\infty} k P_{X|Y}(k|\ell) = \sum_{k=0}^{\infty} k/(k! e^1) = E[\text{Po}(1)] = 1$. **Task 2.** As X(1)+X(2)+X(3) is $N(m,\sigma^2)$ -distributed we have $Pr(X(1)+X(2)+X(3) > 6) = Pr(N(m,\sigma^2) > 6) = 1 - \Phi((6-m)/\sigma)$, where m = E[X(1) + X(2) + X(3)] = 3 and $\sigma^2 = \text{Var}(X(1) + X(2) + X(3)) = 3 C_{XX}(0) + 4 C_{XX}(1) + 2 C_{XX}(2) = 3 + 4 e^{-1} + 2 e^{-2}$ [using that $C_{XX}(\tau) = R_{XX}(\tau) - \mu_X^2 = e^{-|\tau|}]$.

Task 3. As

$$\pi(2) = \pi(0) P^{2} = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2/3 & 1/3 \end{bmatrix}^{2} = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2/3 & 1/3 \\ 2/9 & 7/9 \end{bmatrix} = \begin{bmatrix} 4/9 & 5/9 \end{bmatrix},$$

we have $E[X[2]] = \sum_{k=0}^{1} k P_{X[2]}(k) = \sum_{k=0}^{1} k \pi(2)_{k} = 0 \cdot (4/9) + 1 \cdot (5/9) = 5/9.$
Task 4. We have $\hat{R}_{XX}^{(\text{tri})}(\tau) = \frac{1}{2t_{0}} \int_{-t_{0}+|\tau|/2}^{t_{0}-|\tau|/2} X(t-\frac{\tau}{2}) X(t+\frac{\tau}{2}) dt = \frac{1}{2t_{0}} \int_{-t_{0}+|\tau|/2}^{t_{0}-|\tau|/2} \cos(t-\frac{\tau}{2}) \cos(t+\frac{\tau}{2}) dt = \frac{1}{2t_{0}} \int_{-t_{0}+|\tau|/2}^{t_{0}-|\tau|/2} \cos(t-\frac{\tau}{2}) \cos(t+\frac{\tau}{2}) dt = \frac{1}{2t_{0}} \int_{-t_{0}+|\tau|/2}^{t_{0}-|\tau|/2} \cos(t-\frac{\tau}{2}) \cos(t+\frac{\tau}{2}) dt = \frac{1}{2t_{0}} \int_{-t_{0}+|\tau|/2}^{t_{0}-|\tau|/2} \cos(t-\frac{\tau}{2}) \sin(t-\frac{\tau}{2}) dt = \frac{1}{2t_{0}} \int_{-t_{0}+|\tau|/2}^{t_{0}-|\tau|/2} \cos(t-\frac{\tau}{2}) \sin(t-\frac{\tau}{2}) dt = \frac{1}{2t_{0}} \int_{-t_{0}+|\tau|/2}^{t_{0}-|\tau|/2} \sin(t-\frac{\tau}{2}) dt = \frac{1}{2} \int_{-t_{0}+|\tau|/2}^{t_{0}-|\tau|/2}^{t_{0}-|\tau|/2}^{t_{0}-|\tau|/2}^{t_{0}-|\tau|/2}^{t_{0}-|\tau|/2}^$

 $\frac{\tau}{2} \cos(t + \frac{\tau}{2}) dt = \frac{1}{4t_0} \int_{-t_0 + |\tau|/2}^{t_0 - |\tau|/2} (\cos(\tau) + \cos(2t)) dt = \frac{2t_0 - |\tau|}{4t_0} \cos(\tau) + \frac{1}{4t_0} \sin(2t_0 - |\tau|) \text{ for } \tau \in (-2t_0, 2t_0).$ This gives $\hat{S}_{XX}^{(\text{tri})}(f) = (F\hat{R}_{XX}^{(\text{tri})})(f) = \frac{1}{4t_0} \int_{-2t_0}^{2t_0} e^{-j2\pi f\tau} ((2t_0 - \tau|)\cos(\tau) + \sin(2t_0 - |\tau|)) d\tau = \dots$

Task 5. As $H(f) = (Fh)(f) = e^{-|f|}$ we have $E[Y(t)^2] = \int_{-\infty}^{\infty} S_{YY}(f) df = \int_{-\infty}^{\infty} |H(f)|^2$ $S_{NN}(f) df = (N_0/2) \int_{-\infty}^{\infty} e^{-2|f|} df = N_0/2.$

Task 6. We can use the Yule-Walker (YW) equations to find $r_x[0]$ and $r_x[1]$. Since it is simple, this solution will start with a derivation of the YW-equations: If we multiply both sides of the equation

$$x[n] + 0.7x[n-1] = e[n]$$

with x[n-k] and take expectations we get

$$\underbrace{E\{x[n-k](x[n]+0.7x[n-1])\}}_{r_x[k]+0.7r_x[k-1]} = \underbrace{E\{x[n-k]e[n]\}}_{\delta[k]} \quad \text{for } k \ge 0.$$

Using this equation for k = 0 and k = 1 we get the matrix equation

$$\begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix} \begin{bmatrix} r_x[0] \\ r_x[1] \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Solving this matrix equation we get $r_x[0] = 1/0.51 \approx 1.96$ and $r_x[1] = -0.7r_x[0] \approx -1.37$.