MVE136 Random Signals Analysis Fall 2012

Written exam Thursday 25 October 20122.00 - 6.00 pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Beta or 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
GRADES: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Good Luck!

Task 1. Find the conditional expectation $E(X \mid Y=\ell)$ for a pair of discrete random variables X and Y with $\operatorname{PMF} P_{X, Y}(k, \ell)=\left(k!\ell!\mathrm{e}^{2}\right)^{-1}$ for $k, \ell \in\{0,1,2, \ldots\}$. points)

Task 2. Find the probability $\operatorname{Pr}(X(1)+X(2)+X(3)>6)$ for a continuous time WSS Gaussian process $X(t)$ with mean $\mu_{X}=1$ and autocorrelation function $R_{X X}(\tau)=$ $\mathrm{e}^{-|\tau|}+1$ for $\tau \in \mathbb{R}$. (5 points)

Task 3. Consider a Markov chain $X[k] \in\{0,1\}$ with initial distribution $\pi(0)$ and transition matrix P given by

$$
\pi(0)=(1 / 2,1 / 2)=\left[\begin{array}{ll}
1 / 2 & 1 / 2
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{cc}
0 & 1 \\
2 / 3 & 1 / 3
\end{array}\right]
$$

respectively. [The two different representations of $\pi(0)$ are in vector form (first) and row matrix form (secondly): It is a matter of taste which one one prefers - both are correct.] Find the expected value $E[X[2]]$ of $X[2]$. (5 points)

Task 4. Calculate the autocorrelation estimate $\hat{R}_{X X}^{(\operatorname{tri})}(\tau)=\frac{1}{2 t_{0}} \int_{-t_{0}+|\tau| / 2}^{t_{0}-|\tau| / 2} X\left(t-\frac{\tau}{2}\right) X(t+$ $\left.\frac{\tau}{2}\right) d t$ for $\tau \in\left(-2 t_{0}, 2 t_{0}\right)$ if the observed signal $X(t)$ over the interval $\left(-t_{0}, t_{0}\right)$ is given by $\cos (t)$ for $t \in\left(-t_{0}, t_{0}\right)$. [Hint: The trigonometric formula $\cos (x+y)+\cos (x-y)=$ $2 \cos (x) \cos (y)$ might become useful.] Say something about how the corresponding PSD estimate $\hat{S}_{X X}^{(\text {tri) }}(f)$ is calculated (but you need not do all details of the calculation). points)

Task 5. Let continuous time white noise $N(t)$ [a zero-mean WSS process with PSD $S_{N N}(f)=N_{0} / 2$ for $\left.f \in \mathbb{R}\right]$ be input to an LTI system with impulse response $h(t)=$ $2 /\left(1+(2 \pi t)^{2}\right)$ for $t \in \mathbb{R}$. Find the average power $E\left[Y(t)^{2}\right]$ of the output $Y(t)$ from the LTI system. (5 points)

Task 6. Compute the autocorrelation function $r_{x}[n]$ for $n=0$ and $n=1$ when $x[n]$ is an $\mathrm{AR}(1)$-process with parameter $a_{1}=0.7$. You can assume that the input noise has variance $\sigma_{e}^{2}=1$.
(5 points)

MVE136 Random Signals Analysis Fall 2012

Solutions to written exam Thursday 25 October 2012

Task 1. As $P_{Y}(\ell)=\sum_{k=0}^{\infty} P_{X, Y}(k, \ell)=\left(\ell!\mathrm{e}^{1}\right)^{-1}$ we get $P_{X \mid Y}(k \mid \ell)=P_{X, Y}(k, \ell) / P_{Y}(\ell)$ $=\left(k!\mathrm{e}^{1}\right)^{-1}$ so that $E(X \mid Y=\ell)=\sum_{k=0}^{\infty} k P_{X \mid Y}(k \mid \ell)=\sum_{k=0}^{\infty} k /\left(k!\mathrm{e}^{1}\right)=E[\operatorname{Po}(1)]=1$.

Task 2. As $X(1)+X(2)+X(3)$ is $N\left(m, \sigma^{2}\right)$-distributed we have $\operatorname{Pr}(X(1)+X(2)+X(3)>$ $6)=\operatorname{Pr}\left(N\left(m, \sigma^{2}\right)>6\right)=1-\Phi((6-m) / \sigma)$, where $m=E[X(1)+X(2)+X(3)]=3$ and $\sigma^{2}=\operatorname{Var}(X(1)+X(2)+X(3))=3 C_{X X}(0)+4 C_{X X}(1)+2 C_{X X}(2)=3+4 \mathrm{e}^{-1}+2 \mathrm{e}^{-2}$ [using that $C_{X X}(\tau)=R_{X X}(\tau)-\mu_{X}^{2}=\mathrm{e}^{-|\tau|]}$.

Task 3. As

$$
\pi(2)=\pi(0) P^{2}=\left[\begin{array}{ll}
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
2 / 3 & 1 / 3
\end{array}\right]^{2}=\left[\begin{array}{ll}
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{cc}
2 / 3 & 1 / 3 \\
2 / 9 & 7 / 9
\end{array}\right]=\left[\begin{array}{ll}
4 / 9 & 5 / 9
\end{array}\right]
$$

we have $E[X[2]]=\sum_{k=0}^{1} k P_{X[2]}(k)=\sum_{k=0}^{1} k \pi(2)_{k}=0 \cdot(4 / 9)+1 \cdot(5 / 9)=5 / 9$.
Task 4. We have $\hat{R}_{X X}^{(\text {tri) }}(\tau)=\frac{1}{2 t_{0}} \int_{-t_{0}+|\tau| / 2}^{t_{0}-|\tau| 2} X\left(t-\frac{\tau}{2}\right) X\left(t+\frac{\tau}{2}\right) d t=\frac{1}{2 t_{0}} \int_{-t_{0}+|\tau| / 2}^{t_{0}-\mid \tau / 2} \cos (t-$ $\left.\frac{\tau}{2}\right) \cos \left(t+\frac{\tau}{2}\right) d t=\frac{1}{4 t_{0}} \int_{-t_{0}+|\tau| / 2}^{t_{0}-|\tau| 2}(\cos (\tau)+\cos (2 t)) d t=\frac{2 t_{0}-|\tau|}{4 t_{0}} \cos (\tau)+\frac{1}{4 t_{0}} \sin \left(2 t_{0}-|\tau|\right)$ for $\tau \in\left(-2 t_{0}, 2 t_{0}\right)$. This gives $\hat{S}_{X X}^{\text {(tri) }}(f)=\left(F \hat{R}_{X X}^{(\text {tri })}\right)(f)=\frac{1}{4 t_{0}} \int_{-2 t_{0}}^{2 t_{0}} \mathrm{e}^{-j 2 \pi f \tau}\left(\left(2 t_{0}-\tau \mid\right) \cos (\tau)+\right.$ $\left.\sin \left(2 t_{0}-|\tau|\right)\right) d \tau=\ldots$.

Task 5. As $H(f)=(F h)(f)=\mathrm{e}^{-|f|}$ we have $E\left[Y(t)^{2}\right]=\int_{-\infty}^{\infty} S_{Y Y}(f) d f=\int_{-\infty}^{\infty}|H(f)|^{2}$ $S_{N N}(f) d f=\left(N_{0} / 2\right) \int_{-\infty}^{\infty} \mathrm{e}^{-2|f|} d f=N_{0} / 2$.

Task 6. We can use the Yule-Walker (YW) equations to find $r_{x}[0]$ and $r_{x}[1]$. Since it is simple, this solution will start with a derivation of the YW-equations: If we multiply both sides of the equation

$$
x[n]+0.7 x[n-1]=e[n]
$$

with $x[n-k]$ and take expectations we get

$$
\underbrace{E\{x[n-k](x[n]+0.7 x[n-1])\}}_{r_{x}[k]+0.7 r_{x}[k-1]}=\underbrace{E\{x[n-k] e[n]\}}_{\delta[k]} \quad \text { for } k \geq 0 .
$$

Using this equation for $k=0$ and $k=1$ we get the matrix equation

$$
\left[\begin{array}{cc}
1 & 0.7 \\
0.7 & 1
\end{array}\right]\left[\begin{array}{l}
r_{x}[0] \\
r_{x}[1]
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

Solving this matrix equation we get $r_{x}[0]=1 / 0.51 \approx 1.96$ and $r_{x}[1]=-0.7 r_{x}[0] \approx$ -1.37.

